Real-Time Tracking Based on Improved YOLOv5 Detection in Orchard Environment for Dragon Fruit

Author:

Wang ChaoFeng,Wang Congyue,Wang Lele,Li Yuanhong,Lan Yubin

Abstract

Highlights This method has achieved faster detection speed while maintaining accuracy. It is a real-time tracking method that can track dragon fruits in orchard environments in real-time. The introduction of an attention mechanism in the network provides good robustness to changes in lighting and target scale. Abstract. This article addresses the issue of dragon fruit real-time detection in orchard environments and proposes a real-time detection and tracking model for dragon fruit using an improved YOLOv5 object detection algorithm and Deep-sort object tracking algorithm. By applying real-time tracking to dragon fruit harvesting, the tracking algorithm provides timely feedback on the fruit's location, allowing for prompt correction of environmental issues that may affect the accuracy of the harvesting process. This approach enhances the robustness of the target positioning algorithm. First,based on the YOLOv5 object detection algorithm, the Convolutional Block Attention Module and Transformer self-attention mechanism are introduced to construct a YOLOv5s-DFT object detection model that is more suitable for dragon fruit detection. Next, Combining the Deep-sort multi-object tracking algorithm, this article proposes a real-time detection and tracking method for dragon fruit in the orchard environment. The YOLOv5s-DFT model was trained and experimented with using a self-built dataset. The trained model weight is only 19.26% of YOLOv7. The experimental result shows that, while ensuring detection accuracy, YOLOv5s-DFT has a faster detection speed in dragon fruit detection, with an average frame time of 0.01673 s, which is 0.00422 s faster than the original YOLOv5s. When tracking dragon fruit using the Deep-sort tracking algorithm, it can track dragon fruit at a speed of 47.08 frames per second. When utilizing the Deep-sort tracking algorithm to track dragon fruit, it achieves a tracking speed of 47.08 frames per second, enabling real-time acquisition of the fruit's position information. This technology provides technical assistance for the intelligent harvesting of dragon fruit and the intelligent management of dragon fruit orchards. Keywords: Dragon fruit, Improved YOLOv5, Orchard environment, Real-time tracking.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3