Spray Drift, Operator Exposure, Crop Residue and Efficacy: Early Indications for Equivalency of Uncrewed Aerial Spray Systems with Conventional Application Techniques

Author:

Bonds Jane A.S.,Pai Naresh,Hovinga Sarah,Stump Katie,Haynie Rebecca,Flack Sheila,Bui Travis

Abstract

Highlights Initial data shows UASS spray drift is greater than ground, less than aerial, and similar to an airblast application. Operator exposure with UASS is less than that of a backpack sprayer. No current data shows that residues on crops from UASS applications would be different than conventional applications. UASS applications generally have similar efficacy as their conventional counterparts. Abstract. Uncrewed Aerial Spray Systems (UASS) are being adopted at a rapid pace in agricultural applications of crop protection products. The data required to effectively regulate their use must be gathered to position UASS in terms of equivalency with other conventional practices. In Fall 2021, the CropLife America Drones Working Group initiated an effort to collect published information on establishing the equivalency of UASS applications with conventional application types as it relates to spray drift, operator exposure, crop residue, and efficacy. Based on the published literature, our comparison demonstrated that UASS spray drift is lower than aerial, higher than ground boom, and similar to orchard airblast applications. However, this comparison is based on limited data and needs further confirmation. Individual use cases and other application variables will need to be considered to determine if this generalization applies (e.g., adjuvant use, rotor and nozzle configuration, etc.). For operator exposure, this work supported the current consensus that applications with UASS have less potential for exposure in some respects (e.g., compared to backpack applications), but for other job steps that are unique to UASS (such as mixing and loading) more information is needed. With respect to crop residue, UASS applicators follow the label for conventional application techniques with the same directions for use (i.e., application rate, pre-harvest interval, and number of applications), but there is no evidence that pesticide residues resulting from a UASS application are any different to conventional application techniques. In terms of efficacy, applications with UASS tend to be equivalent to conventional methods; however, more information is needed, especially where good coverage is a requirement. The assessment of published literature on UASS demonstrates potential equivalency in certain key areas and supports the responsible use of this emerging technology, while more information on spray distribution within the target zone, off-target droplet movement, operator and bystander exposure, and pesticidal efficacy continues to be generated. Keywords: Drone, Efficacy, Emerging technology, Operator exposure, Pesticide, Residue, Spray drift, UASS.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3