Simulation of Long-Term Water Erosion in Rainfed Croplands of Eastern Washington

Author:

Dahal Mugal Samrat,Wu Joan,Dobre Mariana,Ewing Robert P.

Abstract

Highlights Water erosion in the inland Pacific Northwest was modeled with WEPP for the past (1940–1982) and present (1983–2020). Water erosion decreased from past to present in the study watersheds. Major factors are increased adoption of conservation practices and decrease in large precipitation events. Abstract. Water erosion is an ongoing problem in eastern Washington due to its hilly terrain, highly erodible silt loam soils, rain on thawing soil, and the prevalence of conventional tillage. The region is characterized by a Mediterranean-type climate with warm, dry summers and cool, wet winters. Three distinct precipitation zones, with annual totals low (<380 mm), intermediate (380–460 mm), and high (>460 mm), dictate the area’s crop rotations. A unique 43-year (1940–1982) dataset of winter erosion measured on multiple agricultural fields in Whitman County, eastern Washington, by Verle Kaiser, a USDA Soil Conservation Service agronomist, showed annual erosion rates averaging 53.8 Mg ha-1, far exceeding the current Natural Resources Conservation Service tolerable limit of 11 Mg ha-1 yr–1 for the soils in the area. Kaiser’s field data allowed us to compare the historical field-measured erosion rates with those simulated by the WEPP (Water Erosion Prediction Project) model. Anthropogenic factors, such as tillage and crop rotation, change with time. Conservation tillage, including reduced- and no-till, has been increasingly adopted in eastern Washington since the mid-1980s. The specific objectives of this study were to (1) apply the WEPP model to simulate soil erosion in eastern Washington and evaluate the interactive effects of climate and management, in addition to topography and soil, on water erosion in the study area, and (2) compare the simulation results with Kaiser’s historical field dataset and elucidate the long-term soil erosion trend. The WEPPcloud interface was used to delineate a watershed within each precipitation zone of the study area. Climate inputs were divided into two periods: the past (1939–1982) and the present (1983–2020). Erosion has noticeably decreased from the past to the present, with WEPP simulated annual erosion averaging 13.5, 34.5, and 52.6 Mg ha-1 for the past, and 9.5, 14.1, and 15.5 Mg ha-1 for the present, in the selected watersheds in the low-, intermediate-, and high-precipitation zones, respectively. The decreasing trend was primarily due to the increased adoption of conservation tillage and crop rotation, as well as a decrease in the number of high-intensity precipitation events in the present climate. Keywords: Inland Pacific Northwest, Soil erosion by water, Temporal trend, WEPP.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3