CFD Simulation of Porous Canopy Heat Transfer in Apple Orchard-Based Frost Protection

Author:

Hua Weiyun,Heinemann Paul,He Long,Yuan Wenan

Abstract

Highlights Convective heat transfer in an apple orchard was simulated by Ansys Fluent. The various heating patterns and convective heat transfer coefficients under different heating schemes were obtained. The heating effects of heater output intensity, output velocity, and heating angle were simulated. The heating duration and heat dissipation time were critical for mobile heating. Abstract. Frost events cause high economic losses in agriculture. Frost protection methods, particularly heating, have been implemented in cold-sensitive crops for millennia. Although often effective, traditional heating strategies can be insufficient or wasteful due to a lack of spatial temperature information, resulting in inadequate protection or uneven heating problems. Computational fluid dynamics (CFD) modeling has been widely used to simulate fluid flow, heat, and mass transfer by predicting various processes such as spatial flow velocity, pressure, and temperature distribution within a simulated environment. A three-dimensional CFD model for simulating airflow and heat transfer in an apple orchard was developed and validated, with the effects of heater output intensity and output velocity, heating angle, and heating duration analyzed. The validated model effectively predicted the spatial temperature changes over time inside the canopy for three representative heating schemes (heaters angled 0°, 45°, and 90° toward a tree row) with an average root mean square error (RMSE) of 2.6 °C. The simulated results show that the heating scheme of heaters angled 45° was the most effective, resulting in the largest average percentage of the protected canopy (72.3%), compared with heaters angled 0° (33.1%) and 90° (56.5%). The average percentage of the protected canopy increased by 108.2% when the heater output intensity increased to 477,000 KJ·h-1 and 46.0% when the heater output velocity increased to 15 m·s-1. However, the percentage of the protected canopy showed diminishing returns as the heater output intensity and velocity increased. The simulated heat dissipation time was linearly related to the heating duration, which can be utilized to determine the reheating time for mobile heating. The outcome of the study can be beneficial for making effective frost protection decisions in apple orchards. Keywords: Canopy, Computational fluid dynamics, Frost protection, Heat transfer, Porous media modeling.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3