Evaporative Pad Cooling Impacts on Barn Environment and Finishing Pig Performance

Author:

Wiegert Jeffery,Knauer Mark,Shah Sanjay B

Abstract

HighlightsFirst study to evaluate evaporative cool cell pad impacts on finishing pig performance in commercial barnsThe cool cell pad reduced air temperature from 31.5°C by 3.9°C with a cooling efficiency of 52%Cool cell pads improved pig well-being by providing more cooling than sprinklers but pig performance was unaffectedTunnel ventilation (cool cells or sprinklers) improved daily weight gain over natural ventilation with sprinklersAbstract. Since heat stress reduces pig growth, cooling is required to optimize barn environment to maintain performance of modern lean-type swine. Hence, summertime barn environment and finisher pig performance were compared between tunnel ventilated barns with sprinklers (TUNNEL; n=3) and tunnel ventilated barns with evaporative cool cell pads (COOLCELL; n=2). Pig performance was also measured in naturally-ventilated barns with sprinklers and mixing fans (NATURAL; n=4). Evaporative cool cell pad performance was also quantified. Barns with identical dimensions and fully slatted flooring were located at the same commercial production site in eastern North Carolina and were monitored from 2014 to 2016. Barn temperature, relative humidity (RH), temperature-humidity index (THI), and thermal images to assess pig temperature were compared between the COOLCELL and TUNNEL treatments. Average daily gain (ADG), feed conversion ratio (FCR), pig survival, culls, and medication costs were compared across all three barn types and seasons (SUMMER vs. NON-SUMMER) on 72 batches of pigs (46,459 total pigs). Between 12 noon and 1 p.m., the evaporative cool cell pads reduced temperature by 3.9°C and had a cooling efficiency of 52%. COOLCELL barn temperature and THI were significantly lower and RH was significantly higher than TUNNEL. There were no significant differences in pig performance or pig temperature between TUNNEL and COOLCELL. Pig ADG was significantly higher in TUNNEL and COOLCELL vs. NATURAL. SUMMER FCR and medication cost were significantly improved vs. NON-SUMMER. Despite lack of treatment effect on pig performance, COOLCELL improved thermal comfort vs. TUNNEL. Keywords: Growth, Heat stress, Pig, Temperature-humidity-index.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3