Responses of Swine Carcasses Continuously Exposed to 43°C Inside a Small-Scale Finishing Room

Author:

Weyer Sara E.,Ramirez Brett C.,Andersen Daniel Steven,Smith Benjamin

Abstract

Highlights Carcass and room temperatures, as well as CO, CO2, O2, and NH3, were continuously monitored. NH3 release was approximately half when carcass leachate was removed from the shallow pit. Gompertz and logistic models fit data well for daily carcass mass reduction and leachate production. Abstract. A catastrophic mortality event for swine would present numerous challenges with the management and disposal of infected carcasses. This study explored a new strategy for biosecure in-barn processing of swine carcasses as an alternative to traditional management and disposal approaches. A small-scale, mobile laboratory with two discovery rooms (DRs), replicating a swine finishing facility, was constructed to execute tests of in-barn disposal methods. Carcasses were desiccated by subjection to heat at a room air temperature of 43°C (110°F) for 16 days. Three carcasses (average = 82 kg, SE=1.27 kg) were elevated over individual leachate collection systems in DRA, thereby removing leachate from the room. Three carcasses in DRB were placed on concrete slats with cumulative leachate collection in the pit below. Environmental data were collected for DR, outdoor, and slat temperatures; and CO2, CO, O2, and NH3 gas concentrations. Carcasses were characterized by rectal and shoulder temperature monitoring and daily weighing of carcasses and leachate in DRA. The air exchange rate for this unventilated system was quantified based on wind and thermal-driven infiltration. Room environments were compared for thermal performance and gas levels. Carcass temperatures were compared, and data suggested no significant impact of flooring material on internal carcass temperature. Gompertz and logistic models were fit to leachate production data and carcass mass reduction data. Ammonia generation rates were found to have a peak production rate of 96.5 g AU-1 day-1 (15.8 g animal-1 day-1) in DRA and 120 g AU-1 day-1 (19.7 g animal-1 day-1) in DRB. Over the study, the generation of NH3 in DRB (360 g) was nearly twice that of DRA (182 g) due to leachate removal. Further quantification and qualification of in-barn management strategies will better define biosecure disposal approaches in the event of a catastrophic mortality event. Keywords: Ammonia, Catastrophic event, Disposal, Foreign animal disease, Mortality management, Pig.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3