Quantifying the Importance of Preferential Flow in a Riparian Buffer

Author:

Guertault Lucie,Fox Garey A.,Halihan Todd,Muñoz-Carpena Rafael

Abstract

HighlightsRiparian buffers and vegetative filter strips are uniquely susceptible to preferential flow.An innovative method is proposed to partition infiltration into matrix and macropore domains.Riparian buffer matrix and plot-scale infiltration experiments were simulated with HYDRUS-1D and VFSMOD.Preferential flow accounted for 32% to 47% of infiltration depending on hydrologic conditions.Preferential flow mechanisms should be incorporated into riparian buffer design tools and models.Abstract. Riparian buffers are uniquely susceptible to preferential flow due to the abundance of root channels, biological activity, and frequent wetting and drying cycles. Previous research has indicated such susceptibility and even measured the connectivity of preferential flow pathways with adjacent streams and rivers. However, limited research has attempted to partition the riparian buffer infiltration between matrix and preferential flow domains. The objectives of this research were to develop an innovative method to quantify soil matrix infiltration at the plot scale, develop a method to partition infiltration into matrix and macropore infiltration at the plot scale, and then use these methods to quantify the significance of macropore infiltration at a riparian buffer site. This research further demonstrated the importance of considering preferential flow processes in design tools and models to evaluate riparian buffer effectiveness. Sprinkler and runon field experiments were conducted at an established riparian buffer site with sandy loam soil. Trenches were installed and instrumented with soil moisture sensors along the width of the riparian buffer (i.e., along the flow path toward the stream) for detecting non-uniform flow patterns due to preferential flow. Riparian buffer parameters, including soil hydraulic parameters, were estimated using HYDRUS-1D for the sprinkler experiments and VFSMOD for the runon experiments. This research partitioned the infiltration into matrix and preferential flow domains by assuming negligible exchange of water between the soil matrix and preferential flow pathways in comparison to the magnitude of soil matrix flow. For these experimental conditions with 0.20 to 0.48 L s-1 of runon and initial soil water contents of 0.29 to 0.32 cm3 cm-3, preferential flow accounted for at least 27% to 32% of the total runon water entering the riparian buffer. This corresponded to approximately 32% to 47% of the total infiltration. While increasing the riparian buffer plot soil hydraulic conductivity in single-porosity models can adequately predict the total infiltration and therefore the surface outflow from the buffer, design tools and models should specifically consider preferential flow processes to improve predictive power regarding the actual infiltration processes and correspondingly the non-equilibrium flow and solute transport mechanisms. Keywords: Flow partitioning, HYDRUS, Matrix flow, Preferential flow, Riparian buffer, VFSMOD.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3