Evaluation of the Accuracy of Machine Reported CAN Data for Engine Torque and Speed

Author:

Rohrer Rodney A.,Luck Joe D.,Pitla Santosh K.,Hoy Roger

Abstract

Abstract. Most modern off-road machinery use embedded electronic controllers connected to a controller area network (CAN) to broadcast machine information for on-board processes and diagnostics. Commercially available tools can record CAN data for a variety of research and commercial uses. For agricultural tractors, there is an opportunity to create advanced test procedures that are more representative of field operations and that could supplement existing machine performance tests, such as the OECD Code 2 Standard Code for the Official Testing of Agricultural and Forestry Tractor Performance. CAN parameters provide an efficient way to collect tractor performance data during field operations. However, the accuracy of CAN messages is not known, and little information was found in the literature regarding the accuracy of CAN messages or validation of reported signals. The objective of this study was to investigate the accuracy of net engine torque as calculated from several relevant CAN channels by comparing it to torque measured with a calibrated laboratory dynamometer. Results of this study indicate statistically significant differences between calculated and measured net engine torque, although there was a strong correlation. Recommendations for future work include replicating this study on more and different engines that report actual engine percent torque - fractional (SPN 4154) and estimated engine parasitic losses - percent torque (SPN 2978). This would provide higher-resolution torque estimates that may help explain the torque differences observed in this study. Keywords: Accuracy, Agricultural machinery, Calibration, Controller area network, CAN bus, Data acquisition, Diesel engine, Dynamometer, Equipment performance, J1939, Machinery, Off-road vehicles, Power take-off, PTO, Tractors, Torque.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3