Prediction of Optimum Supplemental Heat for Piglets

Author:

Milan Hugo F. M.,Campos Maia Alex Sandro,Gebremedhin Kifle G.

Abstract

Abstract. The thermal environment of farrowing facilities is generally controlled at the thermo-neutral zone for sows (15°C to 19°C). This imposes thermal challenges for newborn piglets, which are thermally comfortable at temperatures 10°C to 20°C higher (32°C to 35°C). To satisfy the energetic requirements of piglets, supplemental heat is installed in creep or brooder areas. In this study, we determined optimum supplemental heat requirements (supplied by heating lamps) for piglets based on energy balance as a function of air temperature and animal body weight. We also determined the zone of least thermoregulation of piglets for a given weight when supplemental heat is not provided. Energy balance was calculated using an ensemble of mechanistic models of bio-heat transfer that predicts hair-coat temperature, skin temperature, and skin heat flux. Inputs to the ensemble of mechanistic models include air temperature, black-globe temperature, rectal temperature, and system parameters (e.g., thickness of internal tissues and thermal conductivities). Input temperatures were predicted from measured air temperature in the pen and supplemental heat using machine learning. System parameters were measured or obtained from the literature and optimized using the Monte Carlo method. Ensemble predictions of hair-coat and skin temperature agreed within 3.5% with measured data. The ensemble-predicted zone of least thermoregulation agreed well with previous reports. Predicted optimum supplemental heat showed an exponential decay trend with increasing air temperature and/or animal weight. For air temperature between 15°C and 19°C, the predicted optimum supplemental heat was 266 to 344 W and 44 to 128 W for piglets weighing 1 kg and 20 kg, respectively. The predicted optimum supplemental heat was ~200 W lower for piglets at the end of the farrowing cycle (assuming weight of 20 kg) than at birth (assuming birth weight of 1 kg). Keywords: Bio-heat equation, Computational models, Ensemble learning, Piglets, Precision livestock farming, Supplemental heat, Thermo-neutral zone.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3