Electroflotation of Escherichia coli Improves Detection Rates by Loop-Mediated Isothermal Amplification

Author:

Diaz Lena Michelle,Jenkins Daniel,Kubota Ryo,Walter Natalie,Li Yong,McNealy Tamara

Abstract

Abstract. The power of portable molecular diagnostic systems for detection of pathogenic microorganisms in food and environmental samples is largely limited by small assay volumes (typically 1 to 5 µL), making direct detection of trace contamination (i.e., <104 CFU mL-1) unreliable. To improve detection limits for pathogens dispersed on an ecological scale, we developed a portable point-of-care (POC) sample preparation system using electroflotation (EF) to recover small quantities of these organisms from samples of hundreds of milliliters. Electrolysis reactions, supported on platinum-coated titanium electrodes, generate hydrogen and oxygen microbubbles that impel and displace suspended cells into a recovered concentrate. Samples were prepared by inoculating 380 mL of sterilized phosphate buffer (0.1 M, pH 6.6) with stock culture of ATCC 25922 to final concentrations ranging from 102 to 104 CFU mL-1. Samples were subjected to 10, 15, and 20 min durations of EF treatment under high and low turbulence conditions. We used a loop-mediated amplification (LAMP) assay with primers targeting a single-copy gene (glycerate kinase) in generic to evaluate the effects of EF treatment on concentration and recovery of detectable cell material. LAMP failed to detect in all untreated (control) samples at concentrations below 104 CFU mL-1 but was able to detect in 102 CFU mL-1 samples subjected to various conditions of EF treatment. Two-way ANOVA showed significant differences in detection rates between EF treatment durations for both high (p = 0.0019) and low turbulence (p = 0.002). Dunnett’s multiple comparison tests identified five process conditions resulting in significant (p < 0.05) differences in detection between treatments and the control. Keywords: Biotechnology, Electrolysis, Food pathogens, Microbubbles, Molecular diagnostics, Pathogen detection, POC sample preparation.

Funder

USDA National Institute of Food and Agriculture

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3