Development of a Laser-Guided, Embedded-Computer-Controlled, Air-Assisted Precision Sprayer

Author:

Shen Yue,Zhu Heping,Liu Hui,Chen Yu,Ozkan Erdal

Abstract

Abstract. An embedded computer-controlled, laser-guided, air-assisted, variable-rate precision sprayer was developed to automatically adjust spray outputs on both sides of the sprayer to match the presence, size, shape, and foliage density of tree crops in real time. The sprayer was the integration of an embedded computer, a touch screen, a 270° radial-range laser sensor, a travel speed sensor, a unique algorithm, a custom-designed automatic flow rate control unit, and 40 pulse-width-modulated (PWM) nozzles. The accuracy of the sprayer to detect different-sized trees and control the spray outputs of individual nozzles based on tree structures was tested in a commercial nursery. Spray deposition qualities between variable-rate and constant-rate operational modes of the sprayer were also compared. Test results demonstrated the capability of the sprayer to measure different trees accurately and then control the spray outputs of nozzles independently to match tree structure. The outline profile similarity of paired images taken with a digital camera and with the laser sensor for three trees ranged from 0.81 to 0.89. To spray trees of different sizes and shapes, the sprayer in variable-rate mode (VRM) consumed 12.1% to 43.3% of the spray volume that was used in constant-rate mode (CRM) with an application rate of 468 L ha-1. Moreover, the sprayer had 30% and 55% greater coverage areas per amount of spray deposits in VRM than in CRM. This innovative sprayer should have significant potential to reduce pesticide waste, provide sustainable crop protection to growers, and safeguard the environment. Keywords: Automation, Nursery, Orchard, Precision agriculture, Variable-rate sprayer.

Funder

USDA NIFA SCRI

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3