Numerical Simulation of the Placement of Exhaust Fans in a Tunnel-Ventilated Layer House During the Fall

Author:

Wang Xiaoshuai,Li Jiangong,Wu Jiegang,Yi Qianying,Wang Xinlei,Wang Kaiying

Abstract

HighlightsThe placement and operation of exhaust fans was assessed using CFD simulation.The effective temperature was used to evaluate the indoor thermal environment.The placement and operation of the exhaust fans mainly affected the airflow patterns in the part of the layer house closest to the fans.Abstract. The thermal environment inside a layer house significantly affects the growth, production, and health of the hens. Tunnel ventilation systems have been widely applied to control the indoor climate and air quality for large-scale poultry facilities around the world. Generally, only a few of the exhaust fans operate during mild seasons (spring and fall) in a tunnel-ventilated layer house depending on the outside air temperature. The decision about which exhaust fans to turn on affects the indoor airflow pattern and temperature distribution. However, little research has been reported that investigated the effects of the locations of exhaust fans on ventilation performance. In this study, a computational fluid dynamics (CFD) model was built and validated using field-measured data. The CFD model was then used to evaluate different ventilation strategies (combinations of exhaust fans) in a typical tunnel-ventilated layer house during the fall. The effective temperature was used to assess the performance of different ventilation strategies. Results showed that the locations of the exhaust fans significantly affected the indoor thermal environment, especially in the part of the house closest to the fans, because different locations of operating fans can generate different airflow patterns and affect the airflow through the animal-occupied zone. Based on the simulations, we conclude that the placement and operation of the exhaust fans can be optimized. Turning on the fans that are lower to the ground or near the sidewalls will result in more air bypassing the animal-occupied zones. Our results can help select the best ventilation strategy during the spring and fall in layer houses with tunnel ventilation systems. Keywords: Airflow distribution, Effective temperature distribution, Indoor thermal environments, Ventilation strategy.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3