Modeling the Effects of Future Hydroclimatic Conditions on Microbial Water Quality and Management Practices in Two Agricultural Watersheds

Author:

Coffey Rory,Butcher Jonathan,Benham Brian,Johnson Thomas

Abstract

Highlights Increased fecal coliform (FC) loading from nonpoint sources is associated with wetter-warmer futures. Drier-warmer futures reduced FC loads but caused more recreational water quality criteria exceedances. More extensive BMP implementation may be needed to meet water quality goals. Abstract. Anticipated future hydroclimatic changes are expected to alter the transport and survival of fecally sourced waterborne pathogens, presenting an increased risk of recreational water quality impairments. Managing future risk requires an understanding of the interactions between fecal sources, hydroclimatic conditions, and best management practices (BMPs) at spatial scales relevant to decision makers. In this study, we used the Hydrologic Simulation Program FORTRAN (HSPF) to quantify potential fecal coliform (FC, an indicator of the potential presence of pathogens) responses to a range of mid-century climate scenarios and assess different BMP scenarios (based on reduction factors) for reducing the risk of water quality impairment in two small agricultural watersheds: the Chippewa watershed in Minnesota, and the Tye watershed in Virginia. In each watershed, simulations show a wide range of FC responses, driven largely by variability in projected future precipitation. Wetter future conditions, which drive more transport from nonpoint sources (e.g., manure application, livestock grazing), show increases in FC loads. Loads typically decrease in drier futures; however, higher mean FC concentrations and more recreational water quality criteria exceedances occur, likely caused by reduced flow during low-flow periods. Median changes across the ensemble generally show increases in FC load. BMPs that focus on key fecal sources (e.g., runoff from pasture, livestock defecation in streams) within a watershed can mitigate the effects of hydroclimatic change on FC loads. However, more extensive BMP implementation or improved BMP efficiency (i.e., higher FC reductions) may be needed to fully offset increases in FC load and meet water quality goals, such as total maximum daily loads and recreational water quality standards. Strategies for managing climate risk should be flexible and to the extent possible include resilient BMPs that function as designed under a range of future conditions. Keywords: Climate, HSPF, Management responses, Microbial water quality, Modeling, Watersheds.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3