Comparison of Droplet Size, Coverage, andDrift Potential from UAV Application Methods and Ground Application Methods on Row Crops

Author:

Gibbs Jenna L.,Peters Thomas M.,Heck Lindsay P.

Abstract

HighlightsDroplet size, coverage, and drift potential of pesticide spray in corn with UAV application methods were compared with ground methods.Measured droplets were smaller in UAV trials (102 to 182 µm geometric mean diameter) than in ground trials (265 to 432 µm geometric mean diameter).UAV methods (particularly those without a boom) achieved high coverage in the middle swath of the field (>60 droplets cm-2) compared to ground methods (10 to 40 droplets cm-2).Real-time particle monitors indicated potential for downwind spray drift during ground trials but not UAV trials.The findings indicate a strong potential for “spot” or “band” spray coverage using UAV methods.Abstract. Worldwide, the use of uncrewed aerial vehicles (UAVs) for pesticide application has grown tremendously in the past decade. Their adoption has been slower for Midwestern row crops. This study compared droplet size, coverage, and drift potential of sprays from UAV application methods to those from ground (implement) sprayer methods on corn in the Midwest. Droplet sizes measured during UAV spray trials [geometric mean diameters of 179 and 112 µm for UAV (boom) and UAV (no boom), respectively] were substantially smaller than those deposited during implement spray trials [mean diameters of 303 and 423 µm for implement (regular) and implement (pulse)]. Droplet coverage was high and localized in the middle swath of the field for the UAV with boom (10 to 30 droplets cm-2) and with no boom (60 droplets cm-2). Droplet coverage was broader, covering the entire field width for the implement methods (10 to 40 droplets cm-2). Vertical coverage of droplets was more uniform for UAV methods than implement methods. Although the UAVs produced smaller droplets than the implement methods, we still observed greater potential for downwind pesticide drift during the implement spray trials. Because localized application may be beneficial for pest control and drift reduction, the findings indicate a strong potential for “spot” or “band” spray coverage using UAV methods. This is likely due to the smaller size, reduced spray volumes, and increased agility of UAVs as compared to more conventional methods. Keywords: Agriculture, Application, Corn, Coverage, Drift, Droplet, Implement, Particles, Pesticides, Pesticide drift, Precision agriculture, Row crops, Spray trial, Uncrewed aerial vehicle (UAV), Unmanned aerial vehicle (UAV).

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3