Field Evaluation of Targeted Shake-and-Catch Harvesting Technologies for Fresh Market Apple

Author:

Zhang Xin,He Long,Karkee Manoj,Whiting Matthew David,Zhang Qin

Abstract

HighlightsThree shaking methods and vibratory harvesting systems were evaluated and compared.Multi-year field evaluations were performed with up to six cultivars trained to formal architectures.The updated semi-automated system achieved the highest fruit removal efficiency and the best fruit quality.Abstract. Apple is the most economically important agricultural crop in Washington State. In 2018, Washington State produced ~3.3 billion kg of apple, accounting for approximately 63% of U.S. production. Fresh-market apple is currently harvested manually, requiring large numbers seasonal semi-skilled workers for a small harvest window. To overcome the increasing challenges of uncertain labor availability and raising labor costs, a promising mechanical harvesting system, using a targeted shake-and-catch approach, is under development at Washington State University. This study evaluated the system by analyzing its fruit harvest efficiency and fruit quality with three shaking methods, i.e., continuous non-linear, continuous linear, and intermittent linear shaking, on up to six apple cultivars trained to formal tree architectures. Results showed that intermittent linear shaking achieved 90% fruit removal efficiency for ‘Scifresh’ cultivar, while continuous linear shaking achieved only 63% removal efficiency for ‘Gala’. This study also compared three vibratory systems: a hand-held system, a hydraulically driven system, and a semi-automated hydraulic system. The semi-automated system achieved the highest fruit removal efficiency (90%), followed by the hand-held (87%) and hydraulic (84%) systems, mainly due to the different shaking methods employed. However, the differences were statistically insignificant. Fruit catching efficiency varied among the harvesting systems, with the hand-held system achieving the highest efficiency (97%), followed by the hydraulic (91%) and semi-automated (88%) systems. Among the three tested technologies, the prototype semi-automated system achieved the highest level of mechanization, as well as high fruit removal efficiency and the best fruit quality. Because the semi-automated system did not include an auto-positioning function, positioning its shaker head took about eight times longer (~103 s) than the actual shaking time (~13 s), which suggests that a fully automated system is desirable to further increase productivity. This study showed that the shake-and-catch approach has great potential for practical adoption in harvesting of fresh-market apple and therefore can have a positive economic impact on the U.S. apple industry. Keywords: Automation in apple production, Bulk mechanical harvest, Semi-automated system, Shaking method, Time efficiency.

Funder

USDA National Institute of Food and Agriculture

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3