Development of a Framework for the Assessment of Energy Demand-Based Greenhouse Gas Mitigation Options for the Agriculture Sector

Author:

Bonyad Marziyeh,Shafique Hafiz Umar,Mondal Md. Alam Hossain,Subramanyam Veena,Kumar Amit,Ahiduzzaman Md.

Abstract

Abstract. This study assesses greenhouse gas (GHG) mitigation options for the agriculture sector. The Long-range Energy Alternatives Planning (LEAP) model was used to develop a framework to assess future trends in energy demand and associated GHG emissions for the agriculture sector and to assess various GHG mitigation options associated with energy consumption. A business-as-usual (reference) scenario and 32 GHG mitigation scenarios were developed for the years 2009-2050 using the LEAP model. A case study for Alberta, Canada, was conducted. In the model, GHG mitigation scenarios were developed for the energy demand side (e.g., farm machines, farm transportation, lighting, and ventilation) based on efficiency improvements and the use of renewable energy. The mitigation scenarios were divided into two planning horizons based on technology penetration: slow penetration (2009-2050) and fast penetration (2009-2030). For each planning horizon, 16 scenarios were assessed. Of all farm machines, efficient diesel tractors have the highest GHG mitigation potential: 12.35 MT of CO2 equivalent by 2050 and 4.7 MT of CO2 equivalent by 2030. In addition, GHG abatement cost curves show that biodiesel tractors and efficient diesel tractors have the highest GHG mitigation potential, with attractive abatement costs of -$62 and -$11 tonne-1 of CO2 mitigated by 2050, respectively. Keywords: Abatement cost, Agriculture sector, Energy efficiency, GHG mitigation, LEAP model.

Funder

NSERC/Cenovus/Alberta Innovates Associate Industrial Research Chair Program in Energy and Environmental Systems Engineering

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3