Performance Evaluation of a Large-Scale Swine Manure Mesophilic Biogas Plant in China

Author:

Wang Yi,Zhang Wanqin,Dong Hongmin,Zhu Zhiping,Li Baoming

Abstract

Abstract. With the rapid growth of large-scale and intensive swine farms have come many ecological and environmental problems associated with the substantially increased and concentrated animal waste production. In this article, a swine manure and flushed slurry to renewable energy management system is present and discussed. This system was installed in a commercial feeder-to-finish swine farm with 18,000 head of swine in Beijing, China, and included two mesophilic upflow solids reactors (USRI and USRII, 500 m3 and 700 m3) and one psychrophilic plug-flow reactor (PFR, 1000 m3). In this study, USRII was monitored throughout a whole year to evaluate the performance of this swine waste to energy system. The biogas plant used mixed solid swine manure and flushed slurry as substrate with a relatively low organic loading rate (OLR) of 0.7 to 1.8 kg volatile solids (VS) m-3 d-1. The hydraulic retention time (HRT) varied from 15 to 22 days depending on the season. Less added water contributed to the longer HRT and more concentrated influent in winter. In winter, the specific methane production (SMP) of the digester was 0.43 m3 CH4 kg-1 VSadded, which was slightly lower than the value reported in Europe (0.45 m3 CH4 kg-1 VSadded) but about 48.3% higher than that in Asia (0.29 m3 CH4 kg-1 VSadded). This indicated that the performance of this USR in winter was stable, with a higher biogas production, and up to 90% of the VS was removed as well. However, the low OLR limited the volumetric methane production rate to only 0.21 to 0.57 m3 m-3 d-1. Keywords: Flushed slurry, Large-scale biogas plant, Monitoring, Performance, Swine manure.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3