Drift of Droplets from Air-Induction Nozzles

Author:

Post Scott L.

Abstract

Abstract. For more than 20 years, air-induction or air-inclusion (AI) nozzles have had increased use for pesticide application due to their drift reduction capabilities. The pressure drop created by the pre-orifice and the venturi chamber results in a slower-moving liquid sheet exiting the main orifice, which in turn results in larger droplet sizes, which are less prone to drift. However, two additional factors somewhat mitigate the advantage of larger droplets from AI nozzles: the lower initial spray jet momentum from AI nozzles (compared to standard nozzles of the same flow rating at the same pressure) means that droplets from AI nozzles are more affected by lateral crosswind, and the lower effective liquid density of droplets from AI nozzles due to the presence of air inclusions means that AI droplets are more affected by aerodynamic drag than pure liquid droplets of comparable sizes from standard nozzles. In this work, theoretical and numerical models are developed to quantify these effects and develop tools for accurate drift prediction from sprayers using AI nozzles. The reduction in spray density due to the presence of air inclusions is in the range of 12% to 36%. This reduction in density affects the aerodynamic drift of the spray droplets, with the result that a droplet with 30% air inclusions would have the drift characteristics of a normal droplet with 20% smaller diameter. HighlightsSprays from air induction (AI) nozzles typically contain 12% to 36% air inclusions by volume.A droplet with 30% air inclusions would have the same drift characteristics as a water droplet of 20% smaller diameter.An analytical model is developed to predict the drift distances of small droplets. Keywords: Air induction, Droplet size, Nozzles, Pesticides, Sprayers.

Funder

U.S. Forest Service

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3