A Weather Generator-Based Statistical Downscaling Tool for Site-Specific Assessment of Climate Change Impacts

Author:

Chen Jie,Zhang Xunchang John,Li Xiangquan

Abstract

Abstract. Statistical downscaling approaches are usually used to bridge the gap between climate model outputs and data requirements of impact models such as crop and soil erosion models. This study synthesizes, integrates, and standardizes a statistical downscaling method that was initially developed in 2005 and subsequently evaluated and improved during the last decade. A new downscaling software program, Generator for Point Climate Change (GPCC), has been developed to automate and visualize the method to assist end users with detailed technical and user documentation. GPCC readily generates daily time series of climate change scenarios for local and site-specific climate change impact studies using monthly projections from global climate models or regional climate models. The downscaled variables include precipitation and maximum and minimum temperatures. This software provides a simple but effective climate downscaling tool for assessing the impacts of climate change on crop production, soil hydrology, and soil erosion at a field scale. The tool can also provide an alternative downscaling method to facilitate the international collaborative efforts of the Agricultural Model Intercomparison and Improvement Project (AgMIP) for simulation of world food production and food security assessment. The detailed downscaling methods, their scientific bases, and the advantages of GPCC over other commonly used downscaling methods are presented. GPCC is written in the Matlab language, and a standalone version can be run on Windows XP or above without Matlab software. The tool has a graphical user interface that is simple and easy to generate downscaled climates as well as to visualize downscaled outputs. Each interface tab and key button and their functions are described to facilitate its widespread application. Keywords: Agricultural system models, Climate change impacts, Generator for point climate change, Interface, Statistical downscaling, Stochastic weather generator.

Funder

National Natural Science Foundation of China

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3