Design and Construction of a Precision Weighing Lysimeter in Southeast Colorado

Author:

Andales Allan A.,Straw Dale,Marek Thomas H.,Simmons Lane H.,Bartolo Michael E.,Ley Thomas W.

Abstract

Abstract. Accurate estimates of crop evapotranspiration (ET) are needed to effectively manage irrigation resources in the Arkansas River basin in Colorado and to maintain compliance with the Arkansas River compact with Kansas. This was a major impetus for the construction of a precision weighing lysimeter in the Arkansas River basin at the Colorado State University (CSU) Arkansas Valley Research Center (AVRC) near Rocky Ford, Colorado. The objective of this article is to describe the design and construction of the weighing lysimeter and characterize its performance and unique features. The main components of the lysimeter facility are the foundation, the scale system, the soil monolith tank, and the outer tank that houses the aforementioned components. The foundation, which was 4.12 m below the ground surface, consisted of a reinforced concrete slab 2.00 m wide by 6.31 m long and 0.20 m thick that was anchored to six square shaft helical anchors. The outer tank was secured onto the foundation and had a rectangular floor area of 6.10 m × 1.79 m (10.92 m2), an interior vertical clearance of 2.15 m, and walls made of reinforced 8 mm thick steel plates. The floor scale system (mechanical levers and load cell) was installed inside the outer tank and had a gross capacity of 17 Mg. The monolith tank (1.50 m × 1.50 m area, 2.44 m depth, 10 mm steel walls) containing an undisturbed soil profile was set on the scale system. The lysimeter facility was installed in the middle of a 3.5 ha field. Calibration of the scale system resulted in a linear response (R2 = 1.000), with an equivalent conversion coefficient (slope) of 151.09 mm H2O (mV V-1)-1. The sensitivity of the scale system was 0.023 mm of water, which is sufficient for measuring diurnal (15 min to hourly) changes in ET and soil water. Load cell readings taken at a frequency of 0.5 Hz were averaged in 15 min intervals (450 readings per 15 min) to filter out the measurement noise that was attributed to wind. The lysimeter was found to adequately detect ET, irrigation, and precipitation perturbations with an actively growing alfalfa hay crop ( L.) in 2011. The lysimeter facility is a state-of-the-art tool for quantifying ET of irrigated crops in the lower Arkansas basin in southeast Colorado. Keywords: Calibration, Evapotranspiration, Load cell, Weighing lysimeter.

Funder

USDA-NIFA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3