Evaluation of SWAT Soil Water Estimation Accuracy Using Data from Indiana, Colorado, and Texas

Author:

Hashem Ahmed A.,Engel Bernard A.,Marek Gary W.,Moorhead Jerry E.,Flanagan Dennis C.,Rashad Mohamed,Radwan Sherif,Bralts Vincent F.,Gowda Prasanna H.

Abstract

HighlightsSWAT soil water assessment was performed using soil water measurements.Dryland SWAT model soil water content was greater than the irrigated SWAT model.Using SWAT soil water estimates for real-time (daily) irrigation management purposes with the existing SWAT soil water subroutines and available soils data is considered risky.The surface layer showed the greatest soil water variability compared to deeper layers.Abstract. Soil water content (SWC) is a challenging measurement at the field, watershed, and regional scales. Soil and Water Assessment Tool (SWAT) soil water estimates were evaluated at three locations: the St. Joseph River watershed (SJRW) in northeast Indiana, the USDA-ARS Conservation and Production Research Laboratory (CPRL) at Bushland, Texas, and the USDA-ARS Limited Irrigation Research Farm (LIFR) at Greeley, Colorado. The soil water estimates were evaluated under two scenarios: (1) for the defined soil profile, and (2) by individual layer. Each site’s soil water assessment was performed based on the existing management conditions during each experiment, whether dryland or irrigated, and for various periods depending on SWC measurement availability at each site. The SWAT soil water was evaluated as follows: the Indiana site was evaluated under dryland conditions using daily soil water observations for one year; the Texas site was evaluated for a ten-year period under irrigated and dryland conditions using weekly soil water observations from four lysimeters; and the Colorado site was evaluated under irrigated conditions for a four-year period. The simulated soil water was evaluated by comparing the model simulations with observed daily and weekly soil water measurements at the three sites. Based on the results, even though all the SWAT models were considered to perform as good models following calibration (streamflow, ET, etc.), the soil water simulations were unacceptable for the defined soil profile and for individual layers at the three sites. Deeper soil layers had observations greater than field capacity values, indicating poor soil parameterization. The dryland model had greater water content than the irrigated model, contradicting the soil water measurements. This greater soil water simulation with the dryland model is a result of SWAT model uncertainties with ET reduction under dryland conditions due to water stress. This study indicated that soil water estimation using the default SWAT soil water equations has many sources of uncertainties. Two apparent sources resulted in the SWAT model’s poor performance: (1) SWAT soil water routines that do not fully represent soil water moving between layers to meet plant demand and (2) uncertainty in soil parameterization. Keywords: Hydrologic modeling, Soil moisture, Soil moisture sensor, Soil water, Soil and Water Assessment Tool.

Funder

Egyptian Government General Mission Scholarship

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3