Determination of Leaf Water Content with a Portable NIRS System Based on Deep Learning and Information Fusion Analysis

Author:

Zhou Lei,Zhang Chu,Taha Mohamed Farag,Qiu Zhengjun,He Yong

Abstract

HighlightsA portable NIRS system with local computing hardware was developed for leaf water content determination.The proposed convolutional neural network for regression showed a satisfactory performance.Decision fusion of multiple regression models achieved a higher precision than single models.All of the devices and machine intelligence algorithms were integrated into the system.Software was developed for system control and user interface.Abstract. Spectroscopy has been widely used as a valid non-destructive technique for the determination of crop physiological parameters. In this study, a portable near-infrared spectroscopy (NIRS) system was developed for rapid measurement of rape (Brassica campestris) leaf water content. An integrated spectrometer (900 to 1700 nm) was used to collect the spectra. A Wi-Fi module was adopted for driving the spectrometer and realizing data communication. The NVIDIA Jetson Nano developer kit was employed to handle the received spectra and perform computing tasks. Three embedded spectral analysis models, including support vector regression (SVR), partial least square regression (PLSR), and deep convolutional neural network for regression (CNN-R), and decision fusions of these methods were built and compared. The results demonstrated that the separate models produced satisfactory predictions. The proposed system achieved the highest precision based on the fusion of PLSR and CNN-R. The hardware devices and analytical algorithms were all integrated into the proposed portable system, and the tested samples were collected from an actual field environment, which shows great potential of the system for outdoor applications. Keywords: Decision fusion, Deep learning, Leaf water content, Local computing, Portable NIRS system.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3