Investigation of Branch Accessibility with a Robotic Pruner for Pruning Apple Trees

Author:

Zahid Azlan,He Long,Choi Daeun,Schupp James,Heinemann Paul

Abstract

HighlightsA branch accessibility simulation was performed for robotic pruning of apple trees.A virtual tree environment was established using a kinematic manipulator model and an obstacle model.Rapidly-exploring random tree (RRT) was combined with smoothing and optimization for improved path planning.Effects on RRT path planning of the approach angle of the end-effector and cutter orientation at the target were studied.Abstract. Robotic pruning is a potential solution to reduce orchard labor and associated costs. Collision-free path planning of the manipulator is essential for successful robotic pruning. This simulation study investigated the collision-free branch accessibility of a six rotational (6R) degrees of freedom (DoF) robotic manipulator with a shear cutter end-effector. A virtual environment with a simplified tall spindle tree canopy was established in MATLAB. An obstacle-avoidance algorithm, rapidly-exploring random tree (RRT), was implemented for establishing collision-free paths to reach the target pruning points. In addition, path smoothing and optimization algorithms were used to reduce the path length and calculate the optimized path. Two series of simulations were conducted: (1) performance and comparison of the RRT algorithm with and without smoothing and optimization, and (2) performance of collision-free path planning considering different approach poses of the end-effector relative to the target branch. The simulations showed that the RRT algorithm successfully avoided obstacles and allowed the manipulator to reach the target point with 23 s average path finding time. The RRT path length was reduced by about 28% with smoothing and by 25% with optimization. The RRT smoothing algorithm generated the shortest path lengths but required about 1 to 3 s of additional computation time. The lowest coefficient of variation and standard deviation values were found for the optimization method, which confirmed the repeatability of the method. Considering the different end-effector approach poses, the simulations suggested that successfully finding a collision-free path was possible for branches with no existing path using the ideal (perpendicular cutter) approach pose. This study provides a foundation for future work on the development of robotic pruning systems. Keywords: Agricultural robotics, Collision-free path, Manipulator, Path planning, Robotic pruning, Virtual tree environment.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3