Author:
Teske Milton E.,Wachspress Daniel A.,Thistle Harold W.
Abstract
Abstract. This article summarizes the ability of CHARM+AGDISP to predict the drift and deposition of sprays released from rotary wing unmanned aerial vehicles (UAVs). This predictive capability results from merging algorithms for spray transport, as found in AGDISP (AGricultural DISPersal), with CHARM (Comprehensive Hierarchical Aeromechanics Rotorcraft Model). The resulting software tracks the release of spray droplets from nozzles on the UAV to deposition on the ground. To date, both AGDISP and CHARM, a code that provides a complete representation of the time-varying, unsteady flow field surrounding a helicopter during transient maneuvering flight near the ground, have been extensively validated. The CHARM+AGDISP software is applied to two UAVs to explore the flow field regimes that present challenges for effective UAV operations. The simulations undertaken indicate flight conditions that yield acceptable deposition levels and minimize drift; inversely, conditions are also identified that result in off-target drift that may be problematic. Keywords: Aerial application, AGDISP, CHARM, Helicopter modeling, Unmanned aerial vehicle (UAV).
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献