Water Exchanges and Phosphorus Flux between a Reservoir and Eutrophic Littoral Zone

Author:

McCarty James A.,Hudson Cody B.

Abstract

HighlightsConvective currents led to hydraulic flux and transport of P between bottom and surface waters of the littoral zone.Hydraulic flux was primarily into the bottom of the cove and out of the cove along the surface.Eutrophic littoral areas are a significant source of P to the photic zone of reservoirs, supporting algal growth.Abstract. Eutrophication of surface waters is defined by excessive algal growth, with consequences for drinking water treatment. The sources of phosphorus (P) in southern U.S. reservoirs that fuel peak algal productivity in late summer are still not fully understood. One potential source is reservoir littoral zones, which have been described as the most productive zone of a waterbody. A shallow cove named Granny Hollow in Beaver Lake, northwest Arkansas, was selected as an isolated and semi-controlled location to measure and model sources of P and its transport in a littoral area for the month of July 2018. Hydraulic and P fluxes between the reservoir and littoral area were quantified through field measurements and a 3D lake model. In quantifying hydraulic flux for the month of July, the model indicated that water tended to move into the cove along the bottom and out along the top, with a net hydraulic flux out of the cove of -723,000 m3. Peak surface velocity in the cove averaged 2.09 cm s-1 for the month of July, while peak bottom velocity was 1.29 cm s-1. Diurnally, water movement switched directions, moving out of the cove along the surface during differential heating and into the cove along the surface during differential cooling due to thermoconvective flow. During differential heating, the water velocity and hydraulic flux to the main reservoir channel along the surface of the cove were greater than the velocity and flux in the opposite direction during differential cooling. The sources of P within the cove during July included P released from bottom sediments within the cove and littoral zone and transport of P from the reservoir channel to the cove. Transport of P from the main reservoir into the cove was a result of thermoconvective flow. During differential heating, bottom waters from the main reservoir channel were transported to the surface within the littoral zone by thermoconvective currents flowing upslope from deeper to shallower waters. This resulted in P exchange between the reservoir and littoral area and is significant because it represents movement of P from the bottom of the reservoir upward into the photic zone, where it can be used for algal productivity. During July 2018, it was estimated that 13.3 kg of P were transported from the bottom of the cove to the surface by convective currents and subsequently out of the cove. This study shows that eutrophic coves represent a significant source of P to the reservoir and more importantly to the photic zone, supporting algal growth. Keywords: 3D reservoir model, Eutrophication, Internal loading, Thermoconvective flow.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3