Detection of Internally Bruised Blueberries Using Hyperspectral Transmittance Imaging

Author:

Zhang Mengyun,Li Changying,Takeda Fumiomi,Yang Fuzeng

Abstract

Abstract. Internal bruise damage that occurs in blueberry fruit during harvest operations and postharvest handling lowers the overall quality and causes significant economic losses. The main goal of this study was to nondestructively detect internal bruises in blueberries after mechanical damage using hyperspectral transmittance imaging. A total of 600 hand-harvested blueberries were divided into 20 groups of four storage times (30 min, 3 h, 12 h, and 24 h), two storage temperatures (22°C and 4°C), and three treatments (stem bruise, equator bruise, and control). A near-infrared hyperspectral imaging system was used to acquire transmittance images from 970 to 1400 nm with 5 nm bandwidth. Images were acquired from three orientations (calyx-up, stem-up, and equator-up) for fruit in the control and stem bruise groups and from four orientations (calyx-up, stem-up, equator-up, and equator-down) in the equator bruise groups. Immediately after imaging, the fruit samples were sliced, and the sliced surfaces were photographed. The color images of sliced fruit were used as references. By comparing with the reference color images, the profiles of spatial and spectral intensities were evaluated to observe the effect of orientation and help extract regions of interest (ROIs) of bruised and healthy tissues. A support vector machine (SVM) classifier was trained and tested to classify pixels of bruised and healthy tissues. Classification maps were produced, and the bruise ratio was calculated to identify bruised blueberries (bruise ratio >25%). The average accuracy of blueberry identification was 94.5% with the stem-up orientation. The results indicate that detecting bruised blueberries as soon as 30 min after mechanical damage is feasible using hyperspectral transmittance imaging. Keywords: Blueberry, Bruise detection, Classification, Hyperspectral imagery, Transmittance mode.

Funder

USDA NIFA Specialty Crop Research Initiative

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3