Author:
Zhang Mengyun,Li Changying,Takeda Fumiomi,Yang Fuzeng
Abstract
Abstract. Internal bruise damage that occurs in blueberry fruit during harvest operations and postharvest handling lowers the overall quality and causes significant economic losses. The main goal of this study was to nondestructively detect internal bruises in blueberries after mechanical damage using hyperspectral transmittance imaging. A total of 600 hand-harvested blueberries were divided into 20 groups of four storage times (30 min, 3 h, 12 h, and 24 h), two storage temperatures (22°C and 4°C), and three treatments (stem bruise, equator bruise, and control). A near-infrared hyperspectral imaging system was used to acquire transmittance images from 970 to 1400 nm with 5 nm bandwidth. Images were acquired from three orientations (calyx-up, stem-up, and equator-up) for fruit in the control and stem bruise groups and from four orientations (calyx-up, stem-up, equator-up, and equator-down) in the equator bruise groups. Immediately after imaging, the fruit samples were sliced, and the sliced surfaces were photographed. The color images of sliced fruit were used as references. By comparing with the reference color images, the profiles of spatial and spectral intensities were evaluated to observe the effect of orientation and help extract regions of interest (ROIs) of bruised and healthy tissues. A support vector machine (SVM) classifier was trained and tested to classify pixels of bruised and healthy tissues. Classification maps were produced, and the bruise ratio was calculated to identify bruised blueberries (bruise ratio >25%). The average accuracy of blueberry identification was 94.5% with the stem-up orientation. The results indicate that detecting bruised blueberries as soon as 30 min after mechanical damage is feasible using hyperspectral transmittance imaging. Keywords: Blueberry, Bruise detection, Classification, Hyperspectral imagery, Transmittance mode.
Funder
USDA NIFA Specialty Crop Research Initiative
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献