Hyperspectral Imaging with Cost-Sensitive Learning for High-Throughput Screening of Loblolly Pine (Pinus taeda L.) Seedlings for Freeze Tolerance

Author:

Lu Yuzhen,Payn Kitt G.,Pandey Piyush,Acosta Juan J.,Heine Austin J.,Walker Trevor D.,Young Sierra

Abstract

HighlightsA hyperspectral imaging approach was developed for freeze-tolerance phenotyping of loblolly pine seedlings.Image acquisition was conducted before and periodically after artificial freezing of the seedlings.A hyperspectral data processing pipeline was developed to extract the spectra from seedling segments.Cost-sensitive support vector machine (SVM) was used for classifying stressed and healthy seedlings.Post-freeze scanning of seedlings on day 41 achieved the highest screening accuracy of 97%.Abstract. Loblolly pine (Pinus taeda L.) is a commercially important timber species planted across a wide temperature gradient in the southeastern U.S. It is critical to ensure that the planting stock is suitably adapted to the growing environment to achieve high productivity and survival. Long-term field studies, although considered the most reliable method for assessing cold hardiness of loblolly pine, are extremely resource-intensive and time-consuming. The development of a high-throughput screening tool to characterize and classify freeze tolerance among different genetic entries of seedlings will facilitate accurate deployment of highly productive and well-adapted families across the landscape. This study presents a novel approach using hyperspectral imaging to screen loblolly pine seedlings for freeze tolerance. A diverse population of 1549 seedlings raised in a nursery were subjected to an artificial mid-winter freeze using a freeze chamber. A custom-assembled hyperspectral imaging system was used for in-situ scanning of the seedlings before and periodically after the freeze event, followed by visual scoring of the frozen seedlings. A hyperspectral data processing pipeline was developed to segment individual seedlings and extract the spectral data. Examination of the spectral features of the seedlings revealed reductions in chlorophylls and water concentrations in the freeze-susceptible plants. Because the majority of seedlings were freeze-stressed, leading to severe class imbalance in the hyperspectral data, a cost-sensitive learning technique that aims to optimize a class-specific cost matrix in classification schemes was proposed for modeling the imbalanced hyperspectral data, classifying the seedlings into healthy and freeze-stressed phenotypes. Cost optimization was effective for boosting the classification accuracy compared to regular modeling that assigns equal costs to individual classes. Full-spectrum, cost-optimized support vector machine (SVM) models achieved geometric classification accuracies of 75% to 78% before and within 10 days after the freeze event, and up to 96% for seedlings 41 days after the freeze event. The top portions of seedlings were more indicative of freeze events than the middle and bottom portions, leading to better classification accuracies. Further, variable selection enabled significant reductions in wavelengths while achieving even better accuracies of up to 97% than full-spectrum SVM modeling. This study demonstrates that hyperspectral imaging can provide tree breeders with a valuable tool for improved efficiency and objectivity in the characterization and screening of freeze tolerance for loblolly pine. Keywords: Cost-sensitive learning, Freeze tolerance, Hyperspectral imaging, Plant phenotyping, Support vector machine.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3