Author:
Lu Yuzhen,Payn Kitt G.,Pandey Piyush,Acosta Juan J.,Heine Austin J.,Walker Trevor D.,Young Sierra
Abstract
HighlightsA hyperspectral imaging approach was developed for freeze-tolerance phenotyping of loblolly pine seedlings.Image acquisition was conducted before and periodically after artificial freezing of the seedlings.A hyperspectral data processing pipeline was developed to extract the spectra from seedling segments.Cost-sensitive support vector machine (SVM) was used for classifying stressed and healthy seedlings.Post-freeze scanning of seedlings on day 41 achieved the highest screening accuracy of 97%.Abstract. Loblolly pine (Pinus taeda L.) is a commercially important timber species planted across a wide temperature gradient in the southeastern U.S. It is critical to ensure that the planting stock is suitably adapted to the growing environment to achieve high productivity and survival. Long-term field studies, although considered the most reliable method for assessing cold hardiness of loblolly pine, are extremely resource-intensive and time-consuming. The development of a high-throughput screening tool to characterize and classify freeze tolerance among different genetic entries of seedlings will facilitate accurate deployment of highly productive and well-adapted families across the landscape. This study presents a novel approach using hyperspectral imaging to screen loblolly pine seedlings for freeze tolerance. A diverse population of 1549 seedlings raised in a nursery were subjected to an artificial mid-winter freeze using a freeze chamber. A custom-assembled hyperspectral imaging system was used for in-situ scanning of the seedlings before and periodically after the freeze event, followed by visual scoring of the frozen seedlings. A hyperspectral data processing pipeline was developed to segment individual seedlings and extract the spectral data. Examination of the spectral features of the seedlings revealed reductions in chlorophylls and water concentrations in the freeze-susceptible plants. Because the majority of seedlings were freeze-stressed, leading to severe class imbalance in the hyperspectral data, a cost-sensitive learning technique that aims to optimize a class-specific cost matrix in classification schemes was proposed for modeling the imbalanced hyperspectral data, classifying the seedlings into healthy and freeze-stressed phenotypes. Cost optimization was effective for boosting the classification accuracy compared to regular modeling that assigns equal costs to individual classes. Full-spectrum, cost-optimized support vector machine (SVM) models achieved geometric classification accuracies of 75% to 78% before and within 10 days after the freeze event, and up to 96% for seedlings 41 days after the freeze event. The top portions of seedlings were more indicative of freeze events than the middle and bottom portions, leading to better classification accuracies. Further, variable selection enabled significant reductions in wavelengths while achieving even better accuracies of up to 97% than full-spectrum SVM modeling. This study demonstrates that hyperspectral imaging can provide tree breeders with a valuable tool for improved efficiency and objectivity in the characterization and screening of freeze tolerance for loblolly pine. Keywords: Cost-sensitive learning, Freeze tolerance, Hyperspectral imaging, Plant phenotyping, Support vector machine.
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献