MOESHA: A Genetic Algorithm for Automatic Calibration and Estimation of Parameter Uncertainty and Sensitivity of Hydrologic Models

Author:

Barnhart Bradley L.,Sawicz Keith A.,Ficklin Darren L.,Whittaker Gerald W.

Abstract

Abstract. Characterization of the uncertainty and sensitivity of model parameters is an essential facet of hydrologic modeling. This article introduces the multi-objective evolutionary sensitivity handling algorithm (MOESHA) that combines input parameter uncertainty and sensitivity analyses with a genetic algorithm calibration routine to dynamically sample the parameter space. This novel algorithm serves as an alternative to traditional static space-sampling methods, such as stratified sampling or Latin hypercube sampling. In addition to calibrating model parameters to a hydrologic model, MOESHA determines the optimal distribution of model parameters that maximizes model robustness and minimizes error, and the results provide an estimate for model uncertainty due to the uncertainty in model parameters. Subsequently, we compare the model parameter distributions to the distribution of a dummy variable (i.e., a variable that does not affect model output) to differentiate between impactful (i.e., sensitive) and non-impactful parameters. In this way, an optimally calibrated model is produced, and estimations of model uncertainty as well as the relative impact of model parameters on model output (i.e., sensitivity) are determined. A case study using a single-cell hydrologic model (EXP-HYDRO) is used to test the method using river discharge data from the Dee River catchment in Wales. We compare the results of MOESHA with Sobol’s global sensitivity analysis method and demonstrate that the algorithm is able to pinpoint non-impactful parameters, demonstrate the uncertainty of model results with respect to uncertainties in model parameters, and achieve excellent calibration results. A major drawback of the algorithm is that it is computationally expensive; therefore, parallelized methods should be used to reduce the computational burden. Keywords: Genetic algorithm, Hydrologic modeling, Model calibration, Sensitivity analysis, Uncertainty.

Funder

U.S. Environmental Protection Agency

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3