Thermo-Physical Characterization of Kraft Lignin Mixed with Bio-Plasticizers: A Valorization Approach

Author:

Ramachandran Rani P.,Cenkowski Stefan,Paliwal Jitendra

Abstract

HighlightsThermo-physical characterization of two types of Kraft lignin mixed with three bio-plasticizer.Crude glycerol showed the greater depression in melting point with its increasing proportion.The acidic lignin has more tensile strength and density than the alkaline lignin.Micro-pores of the lignin pellet were minimized by adding bio-plasticizer.Abstract. Kraft lignin, a by-product of the paper industry, is well known for its binding properties, enabling its use in the production of pellets and briquettes from biomass. Different bio-plasticizers, by-products from the vegetable oil processing industry, could serve as plasticizers for biomass briquettes. The properties of three bio-plasticizers (glycerol, fatty acid, and biodiesel), when mixed with isolated Kraft lignin, were studied to identify their potential application as efficient binders for biomass briquettes. The phase transition characteristics (glass transition, pre-melting crystallization, and melting) of two types of isolated lignin samples (acidic and alkaline) and lignin-plasticizer mixtures were determined using a differential scanning calorimeter. The mechanical (tensile strength) and physical (density) characteristics of the compacted cylindrical lignin pellets were tested. The spatial distribution of micropores in the lignin pellets was studied using x-ray tomography. Even though an overlap was observed in the glass transition temperatures of the mixtures, a significant depression in the pre-melting crystallization and melting temperatures was observed for both lignin samples containing elevated concentrations of the bio-plasticizers, and the highest tensile strength was obtained for pellets with 10% bio-plasticizer. Among the three bio-plasticizers, crude glycerol showed the greatest depression in melting point with increasing proportions of both acidic lignin (60.7°C ±2°C) and alkaline lignin (85.1°C ±2°C). In general, alkaline lignin showed some limitations over acidic lignin in the tensile strength of the pellets as well as their fusion temperature, even though the addition of a bio-plasticizer improved the strength and depressed the melting point in both lignin-based samples. Keywords: Bio-plasticizer, Lignin, Mechanical properties, Microstructure, Phase transition.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3