ARSPivot, A Sensor-Based Decision Support Software for Variable-Rate Irrigation Center Pivot Systems: Part B. Application

Author:

Andrade Manuel A.,O’Shaughnessy Susan A.,Evett Steven R.

Abstract

HighlightsThe ARSPivot software facilitates variable-rate irrigation management of a center pivot irrigation system.The software embodies a system capable of generating site-specific prescription maps based on weather, plant, and soil water information.ARSPivot’s graphical user interface (GUI) incorporates easy-to-use geographic information system (GIS) tools that help its users to make irrigation management decisions.Abstract. The ARSPivot software was developed for the seamless operation of a complex network consisting of a variable-rate irrigation (VRI) center pivot system and an Irrigation Scheduling Supervisory Control and Data Acquisition (ISSCADA) system that interfaces with weather, plant, and soil water sensing systems. ARSPivot’s graphical user interface (GUI) incorporates a built-in geographic information system (GIS) that maps a center pivot system and facilitates the analysis of data relevant to its operation. The GIS was developed following a minimalistic approach with the objective of making its geospatial data analysis tools accessible to a wide range of users (farmers, irrigation consultants, and researchers). The post-harvest analyses of two experiments carried out in the Texas High Plains during the summers of 2016 and 2017 using a three-span VRI center pivot are presented to illustrate the advantages of using ARSPivot as a decision support tool and how its GIS tools help its users make better informed decisions regarding irrigation management. In these experiments, the north-northwest (NNW) portion of a field planted with corn (Zea mays L.) was irrigated using VRI zone control, and the south-southeast (SSE) portion was irrigated using VRI speed control. Experimental plots in the NNW portion were assigned one of three irrigation levels (80%, 50%, or 30% replenishment of soil water depletion to field capacity in the top 1.5 m), and their irrigation was scheduled using either a plant stress-based algorithm implemented in the ARSPivot software or manual weekly neutron probe (NP) readings. Plots in the SSE portion were assigned a single irrigation level of 80%, and their irrigation was scheduled using either the plant stress method or a two-step hybrid approach in which soil water sensing was combined with the plant stress method to determine irrigation depths. Soil water sensing data for the ISSCADA system were provided by NP readings during the 2016 season and by sets of time-domain reflectometers (TDRs) installed at depths of 15, 30, and 45 cm during the 2017 season. No significant differences were found during either season in terms of mean dry grain yield and crop water productivity (CWP) obtained from plots irrigated at the 80% level in both sides of the field, regardless of the irrigation scheduling method or the type of VRI application method used for irrigation. No significant differences were found during either season between mean dry grain yield and CWP of plots in the NNW portion irrigated using the plant stress-based method and NP readings at the 80% irrigation level. The lack of significant differences documented the potential of the ARSPivot system as a plant and soil water sensing-based decision support software for site-specific irrigation management of corn using a VRI center pivot system. Keywords: Center pivot irrigation, Decision support system, Geographic information system, Precision agriculture, Software.

Funder

USDA National Institute of Food and Agriculture

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3