Author:
Gao Xiaojing,Wang Qiusheng,Ma Guowei
Abstract
Abstract. The field of cohesive and noncohesive mixture erosion is not fully understood because of the numerous factors that influence soil erodibility. In this study, erosion experiments were conducted on mixtures of gravel and silty clay in proportions varying from 0% to 100% by weight. The critical shear stress of erosion and the erosion rate were quantified using an erosion function apparatus (EFA). Experimental data revealed that the mixture critical shear stress first decreased and then increased with an increasing cohesive fraction for mixtures with silty clay contents up to 50%. The critical shear stress of the mixture showed an increasing trend as the silty clay content varied from 60% to 100%. A transition from noncohesive to cohesive erosion behavior occurred at silty clay contents between 30% and 35%. The appropriateness of a dimensionless nonlinear excess shear stress model and the Wilson model was tested based on the EFA experimental data. The dimensionless excess shear stress model was shown to be appropriate for noncohesive mixtures, while the Wilson model performed better than the dimensionless excess shear stress model for cohesive mixtures. Keywords: Critical shear stress, Erosion rate, Dimensionless nonlinear excess shear stress, Soil mixture, Wilson model.
Funder
National Natural Science Foundation of China
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献