Analysis and Design of a Spatial Planetary Noncircular Gear Train for Rice Seedling Transplanting Based on Three Given Positions

Author:

Sun Liang,Zhou Yuzhu,Huang Hengmin,Wu Chuanyu,Zhang Guofeng

Abstract

HighlightsA method for solving a spatial transplanting mechanism with noncircular gears is proposed.A new mechanism for transplanting rice pot seedlings is proposed.A trajectory with a small lateral displacement at the preparation phase is obtained.The working performance is validated by simulations and field tests.Abstract. This study proposes a method of solving the parameters of a spatial planetary gear train with noncircular gears to meet the requirements of wide-narrow row pot seedling transplanting (WPST). First, the planetary gear train was simplified to a spatial open-chain 2R mechanism (planetary carrier). A kinematic model of the 2R mechanism was derived from the three given homogeneous matrices describing the spatial position and attitude information of grasping, extracting, and planting seedlings. Second, the length of each link, attitude of each rotation axis, and relative initial angles were calculated. The model for solving the transmission ratio was deduced. A spatial planetary gear train configuration with a single planet carrier and two-stage driving was derived, in which the middle axis could be determined by combining the selected configuration, represented trajectory, and transmission ratio of each gear pair. Finally, a planetary gear train combining a noncircular gear pair and a helical gear pair was used in the WPST mechanism design. Simulations and tests conducted on a prototype confirmed the correctness of the theoretical model and the practicality of the design. Keywords: Noncircular gear, Planetary gear train, Spatial trajectory, Transmission ratio, Transplanting mechanism.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of an Automated Paddy Transplanting Machine with a Novel Planting Mechanism;2022 Moratuwa Engineering Research Conference (MERCon);2022-07-27

2. Design of clamping-pot-type planetary gear train transplanting mechanism for rice wide–narrow-row planting;International Journal of Agricultural and Biological Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3