Variable-Rate Irrigation Uniformity Model for Linear-Move Sprinkler Systems

Author:

Liu Junping,Gull Umair,Putnam Daniel H.,Kisekka Isaya

Abstract

HighlightsUsing different nozzle sizes on a linear-move sprinkler irrigation system is a simple method for implementing VRI.This study established a variable-rate sprinkler irrigation model for a linear-move system with different nozzles.Uniformity parameters were predicted for different tests, and prediction accuracy ranged from 1.6% to 13.0%.The simulation model can be applied to other sprinkler systems with variable-rate irrigation.Abstract. Variable-rate irrigation (VRI) can vary the application rate by either changing the amount of water flowing through sprinkler nozzles (zone control) or varying the speed of a moving irrigation system across parts of a field, referred to as speed/sector control. The uniformity of sprinkler irrigation in each management zone under VRI directly affects crop growth and yield. The use of different nozzle diameters on a linear-move sprinkler irrigation system is a simple and affordable method for achieving VRI. There are few studies on modeling the uniformity of VRI on linear-move sprinkler irrigation systems. In this study, a cubic spline difference-value model was used to simulate the variable-rate water distribution and uniformity of a linear-move system. Nine tests were designed to evaluate VRI uniformity with different nozzle diameters. A simulation and corresponding field experiments were carried out. The application rate of the simulation model was higher than the experimental values because of wind drift. The uniformity coefficients of the simulation with nozzle diameters of 1.98, 2.97, and 4.17 mm in tests 1, 2, and 3 were 86.56%, 85.24%, and 79.94%, respectively. The uniformity coefficients of the VRI simulations with combinations of nozzle diameters in tests 4 through 9 were 76.89%, 80.70%, 76.67%, 69.58%, 76.64%, and 81.87%, respectively. The smallest error between the simulation and experiment was 1.6%, and the largest error was 13.0%. The simulation model and prediction method can be applied to other sprinkler irrigation systems. Keywords: Linear move, Simulation model, Sprinkler irrigation, Uniformity, VRI.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3