Prediction of Human Responses to Dairy Odor Using an Electronic Nose and Neural Networks

Author:

Chang Fangle,Heinemann Paul

Abstract

Abstract. Odor emitted from dairy operations may cause negative reactions by farm neighbors. Identification and evaluation of such malodors is vital for better understanding of human response and methods for mitigating effects of odors. The human nose is a valuable tool for odor assessment, but using human panels can be costly and time-consuming, and human evaluation of odor is subjective. Sensing devices, such as an electronic nose, have been widely used to measure volatile emissions from different materials. The challenge, though, is connecting human assessment of odors with the quantitative measurements from instruments. In this work, a prediction system was designed and developed to use instruments to predict human assessment of odors from common dairy operations. The model targets are the human responses to odor samples evaluated using a general pleasantness scale ranging from -11 (extremely unpleasant) to +11 (extremely pleasant). The model inputs were the electronic nose measurements. Three different neural networks, a Levenberg-Marquardt back-propagation neural network (LMBNN), a scaled conjugate gradient back-propagation neural network (CGBNN), and a resilient back-propagation neural network (RPBNN), were applied to connect these two sources of information (human assessments and instrument measurements). The results showed that the LMBNN model can predict human assessments with accuracy as high as 78% within a 10% range and as high as 63% within a 5% range of the targets in independent validation. In addition, the LMBNN model performed with the best stability in both training and independent validation. Keywords: Animal production, Hedonic tone, Olfactometric models.

Funder

USDA (formula funding)

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gas sensors based on nanoparticle-assembled interfaces and their application in breath detection of lung cancer;Cell Reports Physical Science;2023-11

2. Theoretical prediction of odour determining parameters in dairy effluent using adaptive neuro fuzzy inference system;Global NEST: the international Journal;2023-01-24

3. Electronic Nose Technology;Encyclopedia of Digital Agricultural Technologies;2023

4. Electronic Nose Technology;Encyclopedia of Smart Agriculture Technologies;2023

5. Electronic Nose Technology;Encyclopedia of Smart Agriculture Technologies;2022-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3