A Novel Method of Maize Leaf Disease Image Identification Based on a Multichannel Convolutional Neural Network

Author:

Lin Zhongqi,Mu Shaomin,Shi Aiju,Pang Chao,Sun Xiaoxiao

Abstract

Abstract. Traditional methods for detecting maize leaf diseases (such as leaf blight, sooty blotch, brown spot, rust, and purple leaf sheaf) are typically labor-intensive and strongly subjective. With the aim of achieving high accuracy and efficiency in the identification of maize leaf diseases from digital imagery, this article proposes a novel multichannel convolutional neural network (MCNN). The MCNN is composed of an input layer, five convolutional layers, three subsampling layers, three fully connected layers, and an output layer. Using a method that imitates human visual behavior in video saliency detection, the first and second subsampling layers are connected directly with the first fully connected layer. In addition, the mixed modes of pooling and normalization methods, rectified linear units (ReLU), and dropout are introduced to prevent overfitting and gradient diffusion. The learning process corresponding to the network structure is also illustrated. At present, there are no large-scale images of maize leaf disease for use as experimental samples. To test the proposed MCNN, 10,820 RGB images containing five types of disease were collected from maize planting areas in Shandong Province, China. The original images could not be used directly in identification experiments because of noise and irrelevant regions. They were therefore denoised and segmented by homomorphic filtering and region of interest (ROI) segmentation to construct a standard database. A series of experiments on 8 GB graphics processing units (GPUs) showed that the MCNN could achieve an average accuracy of 92.31% and a high efficiency in the identification of maize leaf diseases. The multichannel design and the integration of different innovations proved to be helpful methods for boosting performance. Keywords: Artificial intelligence, Convolutional neural network, Deep learning, Image classification, Machine learning algorithms, Maize leaf disease.

Funder

Natural Science Foundation of Shandong Province

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3