Spray Characterization of Aerosol Delivery Systems for Use in Stored Product Facilities

Author:

Asuncion Fei Xyza B.,Brabec Daniel L.,Casada Mark E.,Maghirang Ronaldo G.,Arthur Frank H.,Campbell James F.,Zhu Kun Yan,Martin Daniel E.

Abstract

HighlightsHandheld sprayers generated larger droplets and wider droplet size distributions than compressed gas sprayers.Sprayers with higher pressure and nozzles with wider spray angle produced smaller droplets.Droplet size distribution influenced spray coverage, mass concentration, deposition, and sprayer efficacy.The handheld sprayers had less spray coverage and efficiency than the compressed gas sprayers.The deposition at different locations was influenced by the volume of the space, aerosol dosage, and spray time.Abstract. Aerosol insecticides, including pyrethrins, can be used as methyl bromide replacements to control stored product insects inside flour mills and rice mills. The effectiveness of aerosol application for insect control requires knowing the spray characteristics of the equipment to be used and understanding factors that influence the effectiveness of insecticide application. The objectives of this study, as part of efforts to optimize aerosol applications, were to evaluate the characteristics of six aerosol delivery systems (two handheld sprayers and compressed gas sprayer systems fitted with two types of manifolds and two types of nozzles), estimate the dispersion and deposition of aerosol in a simulated stored product facility, and determine how the dispersion and deposition are affected by the characteristics of the sprayers. Results showed that the spray systems differed significantly in spray characteristics. The compressed gas sprayers generated significantly smaller droplets, more uniform droplet size distribution, and better spray coverage than the handheld sprayers. The ellipsoidal nozzle produced significantly smaller droplets than the circular nozzle. While the type of manifold had no significant effect on deposition, higher aerosol dosage and spray time resulted in significantly higher deposition. Results of this study will be used to improve spray techniques for stored product insect control, to validate computational fluid dynamics modeling of aerosol application, and to improve testing methods in large-scale spray testing inside commercial facilities. Keywords: APS spectrometer, Droplet size distribution, HELOS KR-Vario, Mass deposition, Spray characteristics, Spray nozzles.

Funder

USDA CRIS

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3