Development of a Robotic Harvesting Mechanism for Button Mushrooms

Author:

Huang Mingsen,Jiang Xiaohu,He Long,Choi Daeun,Pecchia John,Li Yaoming

Abstract

HighlightsA robotic mushroom picking mechanism was developed, including positioning, picking, and stipe trimming.The picking end-effector was designed based on a bending motion around the stipe-substrate joint.The overall success rate of the developed picking mechanism reached 91.4%.Acting time and air pressure for the suction cup were studied in mushroom bruise level tests.Abstract. Button mushroom (Agaricus bisporus) harvesting mainly relies on costly manpower, which is time-consuming and labor-intensive. Robotic harvesting is an alternative method to address this challenge. In this study, a robotic mushroom picking mechanism was designed, including a picking end-effector based on a bending motion, a four degree-of-freedom (DoF) positioning end-effector for moving the picking end-effector, a mushroom stipe trimming end-effector, and an electro-pneumatic control system. A laboratory-scale prototype was fabricated to validate the performance of the mechanism. Bruise tests on the mushroom caps were also conducted to analyze the influence of air pressure and acting time of the suction cup on bruise level. The test results showed that the picking end-effector was successfully positioned to the target locations. The success rate of the picking end-effector was 90% at first pick and increased to 94.2% after second pick. The main reason for the failures was inclined growing condition of those mushrooms, resulting in difficulties in engaging the mushroom cap with the suction cup facing straight downward. The trimming end-effector achieved a success rate of 97% overall. The bruise tests indicated that the air pressure was the main factor affecting the bruise level, compared to the suction cup acting time, and an optimized suction cup may help to alleviate the bruise damage. The laboratory test results indicated that the developed picking mechanism has potential to be implemented in automatic mushroom harvesting. Keywords: Bruise test, End-effector, Mushroom, Robotic harvesting.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3