Vehicle Impact Analysis Using Vehicle Tracking Systems on Military Lands

Author:

Svendsen Niels G.,Koch Daniel J.,Gertner George Z.,Howard Heidi R.,Ayers Paul D.

Abstract

Abstract. Although the impacts of military vehicles on the landscape have been studied extensively, research has not looked at full-scale multi-vehicle events to estimate land disturbance. Currently, the military extensively uses live and simulated training to prepare troops for combat, and these systems can provide data for accurate determination of the land disturbance patterns resulting from training activities. This article examines a full-scale multi-vehicle event and determines the total moving-vehicle disturbance (event-based impact). It provides a methodology for using in-field simulation and training systems to generate information on vehicle mobility impacts. This article illustrates how such information can be used to determine changes in the Universal Soil Loss Equation (USLE) C factor for areas of disturbed land. For land managers, the major benefit of this approach is rapid identification of locations that are intensely used and therefore subject to land degradation. Additionally, this approach provides a means to readily quantify those impacts as related to vegetation removal and erosion potential. To illustrate this approach, 84 military vehicles were monitored at Orchard Training Area, Idaho, in August 2008, and 592,132 data points were collected to measure distance traveled, average velocity, and turning radius at 1 s intervals. The data were then processed and mapped to ascertain the impacts on vegetation and potential changes in the C factor. Results indicated that vehicles spent 15.9% of the time and 5.9% of the distance traveled off-road. The vegetation removal rate ranged from 0% to 48%, and the cumulative area of vegetation removed was 156,424.9 m2. Future work in this area should focus on developing vehicle impact models for forecasting land disturbance regimes. Keywords: Environmental impact, Impact, Modeling, Off-road vehicles, Soil erosion modeling, Vehicle, Vehicle tracking.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3