Validation and Development of Discharge Equations for 3D Printed Flumes for Flow Monitoring

Author:

Akhter Farhana,McMaine John,McLemore Alex J.,Hurst Morghan J.

Abstract

HighlightsTwo different configurations of 3D printed flumes of two different materials were tested for accuracy and variability.Discharge equations were developed for 3D printed 0.122 m HS and 0.102 m Palmer-Bowlus flumes.3D flumes are accurate and show no statistical variability between prints, providing a low-cost flow measurement tool.Abstract. Flumes are specially shaped, engineered structures that have been used widely for measuring flow. Flumes are typically fabricated from aluminum or fiberglass; however, these types of flumes can be costly if purchased commercially and may lack machine precision if custom fabricated. This limits availability for widespread monitoring by smaller municipalities, engineering firms, or researchers with limited budgets. Using 3D printing technology (additive manufacturing) to produce flumes is very cost-effective, but variability between flumes and materials has not been tested, and discharge equations have not been developed for 3D printed flumes. In this study, a laboratory-scale setup was used to develop discharge equations for two types of 3D printed flumes (0.122 m HS flume and 0.102 m Palmer-Bowlus flume) made from two 3D printing materials: polylactic acid (PLA) and polyethylene terephthalate glycol modified (PETG). Variability between the same type of flume and between different materials for the same type of flume was analyzed to evaluate the consistency of the discharge equation with flumes of the same type. Eight models were developed to fit each dataset (PLA, PETG, and combined PLA and PETG) for both flume types and evaluated for goodness-of-fit and information criteria (AIC and BIC for model parsimony) to select the discharge equation for each flume type. Discharge equations were consistent for the same type of flume across each print and across different print materials. The discharge equations of 3D printed 0.122 m HS flumes and 0.102 m Palmer-Bowlus flumes are Q = 0.45624 × H2.351 and Q = 0.0001176 + 1.309 × (H - 0.0174625)2.235, respectively. The discharge equations of both flume types had R2adj values greater than 97% for the measured data of each individual flume. Both 3D printed flumes were consistent in measuring flow and are suitable for hydrologic monitoring. Keywords: 3D printing, Additive manufacturing, Discharge equation, Flume, Hydrologic monitoring.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3