An Efficient Pipeline for Crop Image Extraction and Vegetation Index Derivation Using Unmanned Aerial Systems

Author:

Lyu Beichen,Smith Stuart D.,Xue Yexiang,Rainey Katy M.,Cherkauer Keith

Abstract

HighlightsThis study addresses two computational challenges in high-throughput phenotyping: scalability and efficiency.Specifically, we focus on extracting crop images and deriving vegetation indices using unmanned aerial systems.To this end, we outline a data processing pipeline, featuring a crop localization algorithm and trie data structure.We demonstrate the efficacy of our approach by computing large-scale and high-precision vegetation indices in a soybean breeding experiment, where we evaluate soybean growth under water inundation and temporal change.Abstract. In agronomy, high-throughput phenotyping (HTP) can provide key information for agronomists in genomic selection as well as farmers in yield prediction. Recently, HTP using unmanned aerial systems (UAS) has shown advantages in both cost and efficiency. However, scalability and efficiency have not been well studied when processing images in complex contexts, such as using multispectral cameras, and when images are collected during early and late growth stages. These challenges hamper further analysis to quantify phenotypic traits for large-scale and high-precision applications in plant breeding. To solve these challenges, our research team previously built a three-step data processing pipeline, which is highly modular. For this project, we present improvements to the previous pipeline to improve canopy segmentation and crop plot localization, leading to improved accuracy in crop image extraction. Furthermore, we propose a novel workflow based on a trie data structure to compute vegetation indices efficiently and with greater flexibility. For each of our proposed changes, we evaluate the advantages by comparison with previous models in the literature or by comparing processing results using both the original and improved pipelines. The improved pipeline is implemented as two MATLAB programs: Crop Image Extraction version 2 (CIE 2.0) and Vegetation Index Derivation version 1 (VID 1.0). Using CIE 2.0 and VID 1.0, we compute canopy coverage and normalized difference vegetation indices (NDVIs) for a soybean phenotyping experiment. We use canopy coverage to investigate excess water stress and NDVIs to evaluate temporal patterns across the soybean growth stages. Both experimental results compare favorably with previous studies, especially for approximation of soybean reproductive stage. Overall, the proposed methodology and implemented experiments provide a scalable and efficient paradigm for applying HTP with UAS to general plant breeding. Keywords: Data processing pipeline, High-throughput phenotyping, Image processing, Soybean breeding, Unmanned aerial systems, Vegetation indices.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3