Cotton Gin Fuel Use Patterns

Author:

Funk Paul A.,Hardin Robert G.,Terrazas Albert A.,Yeater Kathleen M.

Abstract

Highlights Principal component analysis found the impact of controlled and uncontrolled drying system variables. Cotton gin fuel use can be minimized by avoiding excessive drying and minimizing conveying air. Post-harvest processors should minimize the length of, and insulate, the duct from the burner to the mix point. Abstract. Fuel price volatility and variable incoming cotton moisture levels make drying costs unpredictable, threatening cotton gin profitability. One means for managing this risk is improving fuel use efficiency. Fuel use audits were conducted in 26 commercial cotton gins over three seasons to elucidate industry best practices. Material flow and changes in moisture content were used to estimate beneficial drying energy. Airflow and temperature data were used to estimate fuel consumption. The ratio of these quantities, defined as fuel use efficiency, was included with twelve other variables in a multivariate statistical analysis. Principal component analysis identified two controlled variables that inversely correlated to fuel use efficiency: the length of the duct between the burner and the seed cotton mix point, and the volume of conveying air per unit mass of seed cotton. Minimizing these two variables could reduce the cost of fuel energy, provided that the air volume is sufficient to maintain material flow, drying, and gin processing rate even when receiving very wet cotton. Keywords: Drying, Energy conservation, Fuel consumption, Postharvest processing, Principal component analysis.

Funder

Cotton Incorporated, Raleigh, N.C.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3