Effects of Copper, Manganese, and Glucose on the Induction of Ligninolytic Enzymes Produced by Pleurotus ostreatus during Fungal Pretreatment of Switchgrass

Author:

Slavens Shelyn,Marek Stephen M.,Wilkins Mark R.

Abstract

Abstract. produces laccase and manganese peroxidase (MnP) to selectively degrade lignin and can be used as a biological pretreatment of lignocellulose biomass to enhance ethanol production. Exogenous copper and manganese have been reported to increase production of laccase and MnP, respectively. The effects of supplementing copper, manganese, or glucose to switchgrass inoculated with on ligninolytic enzyme activity were evaluated. Solutions of copper, manganese, glucose, or water were added with and without fungal inoculum at 75% moisture for 40 d at 28°C. Ligninolytic enzyme activities and biomass compositions were determined after the pretreatments. Simultaneous saccharification and fermentations (SSF) were conducted with the pretreated biomass. There were no significant differences between the supplement solutions on laccase activity, but MnP activities in copper-treated samples were significantly reduced. Fungal-pretreated samples had significantly less glucan, xylan, and lignin recoveries and significantly greater extractable sugars than non-inoculated controls. Ethanol yields during SSF corresponded with lignin degradation in the fungal-inoculated samples. Water-treated (control solution), fungal-inoculated samples showed the greatest lignin degradation and ethanol yields, while the copper-treated, fungal-inoculated samples had the lowest lignin degradation and ethanol yield. Manganese-treated and glucose-treated, fungal-inoculated samples had similar intermediate lignin contents and ethanol yields. Ethanol yield during SSF was significantly increased by fungal pretreatment compared to no pretreatment. Water alone was more effective than the copper, manganese, and glucose solutions added to the fungal pretreatments. Fungal pretreatment with provided significant lignin degradation to increase ethanol yield from switchgrass biomass. Keywords: Bioenergy, Biological pretreatment, Lignin.

Funder

USDA National Institute of Food and Agriculture

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in microbial pretreatment for biorefining of perennial grasses;Applied Microbiology and Biotechnology;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3