Evaluation of Contribution to Greenhouse Gas Reduction and Economic Benefits of Livestock Manure based Solid Fuel

Author:

Park Mi SookORCID,Hwang Yong WooORCID,Kim Byong ChulORCID,Lee Yun MoORCID,Jung Jong-MinORCID

Abstract

Objectives : In the context where the greenhouse gas (GHG) emissions from livestock manure (LSM) account for more than half of the GHG emissions in the livestock sector, it is necessary to find alternatives to composting due to the decrease in agricultural land. This study aims to calculate the GHG reduction contribution and economic benefits when converting LSM into solid fuel as an alternative to traditional composting.Methods : The study compares the results of converting the entire LSM generated domestically into solid fuel replacing it with hard coal for fuel (HC-F), bituminous coal for raw materials (BC-R), bituminous coal for fuel (BC-F). The GHG reduction contribution is calculated following the domestic GHG inventory methodology, using the IPCC guidelines and the method for calculating carbon emission reduction effects. For the assessment of economic benefits, were evaluated by aggregating the impacts of reducing coal imports and GHG reduction benefits in line with EU-ETS standards. Economic benefits are assessed by combining the effects of avoiding coal imports and the GHG reduction benefits according to the EU-ETS.Results and Discussion : The GHG reduction effect was found to be highest when replacing with HC-F, and this is attributed to the lower heating value and higher GHG emission coefficient of HC-F compared to BC-R, and BC-F, indicating that the substitution with HC-F is most effective in terms of import avoidance. If 20% of the annual coal consumption in 2022 is replaced with solid fuel from LSM, the GHG reduction effects for coal substitution are 1.4% for HC-F, 2.1% for BC-R, and 1.9% for BC-F based on the LSM generation CO<sub>2</sub> emissions from biomass fuel are considered climate-neutral and are excluded from the national total emissions. Solid fuel from LSM serves as an alternative in addressing the GHG generated during the LSM treatment process, contributing to potential reduction. If all generated LSM is replaced with HC-F, BC-R, or BC-F, there are respective GHG reduction effects of 13,193,591 tGHG, 11,320,572 tGHG, and 11,226,331 tGHG.Conclusion In 2018, the livestock sector accounted for approximately 42% of the GHG emissions in the agricultural sector, totaling 9.4 million tCO<sub>2</sub> eq. Assuming the complete conversion of LSM into solid fuel for coal substitution, regardless of the type of coal replaced, it offsets the entire GHG emissions from the agricultural sector. Currently, there is limited demand for the conversion of LSM into solid fuel due to a lack of proof and awareness, but with some coal-fired power plants scheduled for partial shutdown and the government considering energy options for LSM, a promising stage is anticipated in the future for the substitution and expanded use of solid fuel from LSM in place of coal in the coal fuel. Although it may not be possible to entirely replace the coal used in power plants and steel mills with solid fuel from LSM, it can be utilized by increasing the proportion of coal blending. However, even if not reported in the national GHG inventory, the treatment of pollutants generated by solid fuel combustion remains an ongoing challenge. As solid fuel becomes more commonplace in the future, a comprehensive assessment of the entire process, including potential environmental impacts throughout the life cycle, will be necessary to establish a basis for GHG reduction measures.

Funder

Rural Development Administration

Publisher

Korean Society of Environmental Engineering

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3