Assessing the Performance of a Long Short-Term Memory Algorithm in the Dataset with Missing Values

Author:

Park Hyun-GeounORCID,Suh Sang-IkORCID,Jo Gyeong CheolORCID,Jang JinukORCID,Ki Seo JinORCID

Abstract

This study was conducted to assess the performance of a long short-term memory algorithm (LSTM), which was suitable for time series prediction, in the multivariate dataset with missing values. The full dataset for the adopted LSTM model was prepared by running a popular watershed model Hydrological Simulation Program-Fortran (HSPF) in the upper Nam River Basin for 3 years from 2016 to 2018, excluding a one-year warm-up period, on a daily time step. The accuracy of prediction for the LSTM model was evaluated in response to various interpolation methods as well as changes in the number of missing values (for dependent variables) and independent variables (containing a fixed number of missing values for either single or multiple variables). Note that the entire dataset is divided into training and test datasets at a ratio of 7:3. Results showed that different interpolation methods resulted in a considerable variation in performance of the LSTM model. Out of them, StructTS and RPART were selected as the best imputation methods recovering missing values for discharge and total phosphorus, respectively. The prediction error of the LSTM model increased gradually with increasing the number of missing values from 300 to 700. The LSTM model, however, appeared to maintain its performance fairly well even in data sets with a large amount of missing values as long as adequate interpolation methods were adopted for each dependent variable. The performance of the LSTM model degraded further as the number of independent variables containing the fixed number of missing values increased from 1 to 7. We believe that the proposed methodology can be used not only to reconstruct missing values in a real-time monitoring dataset with excellent performance, but also to improve the accuracy of prediction for (time series) deep learning models.

Funder

Rural Development Administration

Publisher

Korean Society of Environmental Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3