Vapor Liquid Equilibrium of Aqueous Diethanolamine Solution for Carbon Dioxide Capture Processes

Author:

Shin Hun YongORCID,Kim Jin HoORCID

Abstract

Objectives : Acid gases such as carbon dioxide (CO<sub>2</sub>) and hydrogen sulfide (H<sub>2</sub>S) that cause global warming are mainly generated in chemical processes. As a technology for reducing acid gas, the post-combustion capture process is representative. Aqueous alkanolamine solution, which is mainly used in the carbon dioxide absorption process, is used as the most representative chemical absorbent. Thermodynamic data of vapor-liquid equilibrium are important for the economics of process design and operation. In this study, vapor-liquid equilibrium data of water + DEA are measured so that DEA, a secondary amine, can be used in the carbon dioxide absorption process, so that it can be used for designing a new carbon dioxide absorption process.Methods : Vapor-liquid equilibrium data of a mixture of water + DEA (diethanolamine) were measured under isothermal conditions of 393.15 K using HSGC (Headspace Gas Chromatography).Results and Discussion : The measured vapor-liquid equilibrium data were correlated using NRTL, an activity coefficient model. In addition, as additional thermodynamic data of the absorbent mixture, the density of the DEA aqueous mixture was measured at a temperature of 303.15 K to 333.15 K using a density meter (Anton Paar DMA4500). The measured density data of the mixture was converted into excess volume, and the excess volume data was correlated using the Redilchi-Kister-Muggianu equation. Using the measured water+DEA vapor-liquid equilibrium data, it is expected to reducing the design cost and operating cost of the carbon dioxide absorption processes.

Funder

Seoul National University of Science and Technology

Publisher

Korean Society of Environmental Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3