Development of Methodology for Vulnerability Assessment of Chemical Accident in Terrestrial Ecosystem:(1) Focusing on the Trees

Author:

Chae Yooeun,Cui Rongxue,Lee Jieun,Kim Lia,An Youn-Joo

Abstract

Objective:With rapid industrial development, human and the environment are frequently exposed to various chemicals. In particular, there is a possibility that terrestrial ecosystems as well as humans are exposed to a large amount of highly toxic chemicals due to accidents occurring frequently in Korea and abroad. If a large amount of chemicals enter the terrestrial ecosystem due to an accident such as a chemical leakage, the terrestrial ecosystem around the accident site may be affected and these chemicals may impair not only a living organisms, but also the function of terrestrial environment, the habitat of the organisms. The aim of this study is to develop methodology for vulnerability assessment of chemical accident in terrestrial ecosystem.Method:First, we selected 41 forest tree species and 41 shrubs among woody plants according to the domestic distribution and establish various vulnerability indicators that can be evaluated according to the exposure and recovery categories.Results and Discussion:As a result of vulnerability scoring for 41 forest tree species and 41 shrubs, most vulnerable species were <i>Daphniphyllum macropodum, Lindera obtusiloba, Juniperus rigida, Diospyros lotus,</i> and <i>Eucommia ulmoides</i> in forest trees and <i>Zanthoxylum piperitum, Cephalotaxus koreana, Forsythia koreana, Cycas revoluta,</i> and <i>Lespedeza maximowiczii</i> in shrubs.Conclusions:This study quantified the vulnerability of trees to chemical accidents by adding them and assigning them according to their characteristics. We expect that the risk of chemicals caused by chemical accidents occurring in these days and the exposure of chemicals to the environment can be assessed in terms of ecological perspective using the assessment of vulnerability of terrestrial ecosystems proposed in this study.

Funder

Korea Environment Industry and Technology Institute

Ministry of Environment

Publisher

Korean Society of Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3