Comparison of Ammonium-oxidizing Bacterial Community Changes in Sludges from a Sewage and a Marine Fish Market Wastewater Treatment Plant During Enrichment Cultivation Under High Saline Conditions

Author:

Kim Jeongmi,Yu Jaecheul,Jeong Soyeon,Kim Yeonju,Bae Hyokwan,Lee Taeho

Abstract

Objectives:It is important to enrich and cultivate ammonia oxidation bacteria (AOB) in order to successfully treat nitrogen in high saline wastewater using a deammonification process. Two different inocula, a sewage sludge and a fish-market wastewater sludge, were cultivated to enrich AOB and compared the changes of microbial community.<br/>Methods:A sequential batch reactor (SBR) inoculated with the sewage sludge (PN1) enriched AOB under high-strength ammonium condition (500-3,000 mg NH4<sup>+</sup>-N/L) and then the salt concentration in the medium was gradually increased up to 20 g-NaCl/L. The other SBR seeded with the fish market wastewater sludge (PN2) was operated to enrich AOB directly under 20 g NaCl/L without any acclimation step.<br/>Results and Discussion:Both PN1 and PN2 successfully showed more than 60% of the nitrite accumulation efficiency at a high saline concentration of 20 g NaCl/L. At the level of the phylum, Proteobacteria containing nitrifying microorganisms became dominant in both PN1 and PN2. However, the most dominant bacterial species in PN1 and PN2 were Nitrosomonas eutropha (60.7%) and N. halophila (20.2%), respectively.<br/>Conclusions:Although different results of the most abundant AOB were shown in both sewage sludge and fish-market wastewater sludge conditions, nitritation was successfully developed even with wastewater containing high salinity. Therefore, in this study, both sludges can be applied for inoculation to the PN process for efficiently treating wastewater with high concentration of ammonium and saline.

Funder

Pusan National University

National Research Foundation of Korea

Publisher

Korean Society of Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3