Efficient degradation of doxycycline and ofloxacin in an aqueous environment using Fe and Cu doped TiO2-SiO2 photocatalyst under sunlight

Author:

Rani Sonam,Garg Alok,Singh Neetu

Abstract

Several drugs have sparked interest as potential COVID-19 treatment options. Doxycycline (DOX) has been widely used with other potential agents to reduce COVID-19-induced inflammation. DOX and OFLX, both well-known antimicrobial and anti-inflammatory drugs, were chosen as model pollutants. Fe, Cu-codoped TiO2-SiO2 was synthesised as a novel photocatalyst active under sunlight irradiation to treat model pollutants. The synthesised catalyst samples were meticulously characterised using various techniques to evaluate their morphological, optical, and structural properties. The results of BET analysis showed that the TSFC1 sample has a large specific surface area of 288 m2g-1. Maximum degradation of DOX and OFLX (about 98%) was achieved with the TSFC1 catalyst. The photocatalytic reusability was investigated for up to seven successive cycles, and the composite particles maintained their high photodegradation activity for DOX and OFLX. TFSC1 composite, in particular, demonstrated high catalytic activity as well as excellent recovery potential, and its combination with solar light, silica, and dopants can be introduced as a promising strategy for efficiently destroying both DOX and OFLX antibiotics. This study highlights the feasibility of hybridising doped dual semiconductor nanostructures in implementing solar light-powered pharmaceutical wastewater degradation.

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3