Optimization and physicochemical studies of alumina supported samarium oxide based catalysts using artificial neural network in methanation reaction

Author:

Rosid Salmiah Jamal MatORCID,Azid Azman,Ahmad Aisyah Fathiah,Zulkurnain Nursyamimi,Toemen Susilawati,Bakar Wan Azelee Wan Abu,Halim Ahmad Zamani Ab,Mokhtar Wan Nur Aini Wan,Rosid Sarina Mat

Abstract

Developed countries are increasing their demand for natural gas as it is an industrial requirement for fuel transportation. Most of modern society relies heavily on vehicles. However, the presence of CO2 gas has led to the categorization of sour natural gas which reduces the quality and price of natural gas. Therefore, the catalytic methanation technique was applied to convert carbon dioxide (CO2) to methane (CH4) gas and reduce the emissions of CO2 within the environment. In this study, samarium oxide supported on alumina doped with ruthenium and manganese was synthesized via wet impregnation. X-ray diffraction (XRD) analysis revealed samarium oxide, Sm2O3 and manganese oxide, MnO2 as an active species. The reduction temperature for active species was at a low reaction temperature, 268.2oC with medium basicity site as in Temperature Programme Reduction (TPR) and Temperature Programme Desorption (TPD) analyses. Field Emission Scanning Electron Microscopy (FESEM) analysis showed an agglomeration of particle size. The characterised potential catalyst of Ru/Mn/Sm (5:35:60)/Al2O3 (RMS 5:35:60) calcined at 1,000oC revealed 100% conversion of CO2 with 68.87% CH4 formation at the reaction temperature of 400oC. These results were verified by artificial neural network (ANN) with validation R2 of 0.99 indicating all modelling data are acceptable.

Funder

Universiti Sultan Zainal Abidin

Universiti Teknologi Malaysia

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3