Ferrate (VI) as efficient oxidant for elimination of sulfamethazine in aqueous wastes: Real matrix implications

Author:

Lalhmunsiama ,Lalthazuala Levia,Tiwari DiwakarORCID

Abstract

The presence of antibiotics in aquatic environments has become a serious concern since they develop the antibiotic/multi-drug-resistant bacteria which further affect to living beings. The study intended to assess the freshly synthesized ferrate (VI) in the degradation of an important emerging micro-pollutant i.e., sulfamethazine (SMZ). Moreover, the real matrix implications are extensively conducted for implication of ferrate (VI) technology as safer and viable options. Batch reactor studies enabled the molar ratio of ferrate (VI) to sulfamethazine is 2:1 with overall rate constant 6,128 mM-2.min-1. Percentage elimination of sulfamethazine was observed Ca. 80% at initial sulfamethazine concentration 0.02 mM and ferrate (VI) dose 0.1 mM. Presence of several co-ions NaCl, Na2HPO4, NaNO3, oxalic acid and NaNO2 showed insignificant effect on elimination of sulfamethazine; whereas the efficiency of ferrate (VI) was lowered due to glycine and EDTA. Mineralization of sulfamethazine is significantly increased at lower pH value (pH 5.0). Further, the removal of sulfamethazine in the real water matrix showed that the elimination efficiency of sulfamethazine is almost unaffected as compared to the distilled water treatment. This implied that ferrate (VI) is a viable and greener option for treatment of emerging water pollutants to enhance the efficiency of existing wastewater treatment plants.

Funder

Council of Scientific and Industrial Research

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In‐situ remediation of TPH‐polluted soil by Na2FeO4 in the Loess Plateau of China;Environmental Progress & Sustainable Energy;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3